1
|
Akcelik-Deveci S, Kılıç E, Mansur-Ozen N, Timucin E, Buyukcolak Y, Oktem-Okullu S. Identification of interaction partners of outer inflammatory protein A: Computational and experimental insights into how Helicobacter pylori infects host cells. PLoS One 2024; 19:e0300557. [PMID: 39471168 PMCID: PMC11521304 DOI: 10.1371/journal.pone.0300557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/26/2024] [Indexed: 11/01/2024] Open
Abstract
Outer membrane proteins (OMPs) play a key role in facilitating the survival of Helicobacter pylori within the gastric tissue by mediating adherence. Among these proteins, Outer inflammatory protein A (OipA) is a critical factor in H. pylori colonization of the host gastric epithelial cell surface. While the role of OipA in H. pylori attachment and its association with clinical outcomes have been established, the structural mechanisms underlying OipA's action in adherence to gastric epithelial cells remain limited. Our study employed experimental and computational approaches to investigate the interaction partners of OipA on the gastric epithelial cell surface. Initially, we conducted a proteomic analysis using a pull-down assay with recombinant OipA and gastric epithelial cell membrane proteins to identify the OipA interactome. This analysis revealed 704 unique proteins that interacted with OipA. We subsequently analyzed 16 of these OipA partners using molecular modeling tools. Among these 16 partners, we highlight three human proteins, namely Hepatocyte growth factor (HGF), Mesenchymal epithelial transition factor receptor (Met), and Adhesion G Protein-Coupled Receptor B1 (AGRB1) that could play a role in H. pylori adherence to the gastric epithelial cell surface with OipA. Collectively, these findings reveal novel host interactions mediated by OipA, suggesting their potential as therapeutic targets for combating H. pylori infection.
Collapse
Affiliation(s)
- Sümeyye Akcelik-Deveci
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem University, Atasehir, Istanbul, Turkey
| | - Elif Kılıç
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem University, Atasehir, Istanbul, Turkey
| | - Nesteren Mansur-Ozen
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem University, Atasehir, Istanbul, Turkey
| | - Emel Timucin
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem University, Atasehir, Istanbul, Turkey
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem University, Atasehir, Istanbul, Turkey
| | - Yaren Buyukcolak
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem University, Atasehir, Istanbul, Turkey
| | - Sinem Oktem-Okullu
- Department of Medical Microbiology, School of Medicine, Acibadem, Atasehir, Istanbul, Turkey
| |
Collapse
|
2
|
Wang Q, Liu W, Zhou H, Lai W, Hu C, Dai Y, Li G, Zhang R, Zhao Y. Tozasertib activates anti-tumor immunity through decreasing regulatory T cells in melanoma. Neoplasia 2024; 48:100966. [PMID: 38237304 PMCID: PMC10828585 DOI: 10.1016/j.neo.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Although immune checkpoint therapy has significantly improved the prognosis of patients with melanoma, urgent attention still needs to be paid to the low patient response rates and the challenges of precisely identifying patients before treatment. Therefore, it is crucial to investigate novel immunosuppressive mechanisms and targets in the tumor microenvironment in order to reverse tumor immune escape. In this study, we found that the cell cycle checkpoint Aurora kinase B (AURKB) suppressed the anti-tumor immune response, and its inhibitor, Tozasertib, effectively activated T lymphocyte cytokine release in vitro and anti-tumor immunity in vivo. Tozasertib significantly inhibited melanoma xenograft tumor growth by decreasing the number of inhibitory CD4+ Treg cells in the tumors, which, in turn, activated CD8+ T cells. Single-cell analysis revealed that AURKB suppressed anti-tumor immunity by increasing MIF-CD74/CXCR4 signaling between tumor cells and lymphocytes. Our study suggests that AURKB is a newly identified anti-tumor immunity suppressor, whose inhibitors may be developed as novel anti-tumor immunity drugs and may have synergistic anti-melanoma effects with immune checkpoint therapies.
Collapse
Affiliation(s)
- Qiaoling Wang
- Department of Pharmacy, University Town Hospital Affiliated of Chongqing Medical University, Chongqing, China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yue Dai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Yu Zhao
- Department of Pharmacy, University Town Hospital Affiliated of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Çankirili NK, Kart D, Çelebi-Saltik B. Evaluation of the biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on human umbilical cord CD146+ stem cells and stem cell-based decellularized matrix. Cell Tissue Bank 2020; 21:215-231. [PMID: 32020424 DOI: 10.1007/s10561-020-09815-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
This study aims to evaluate the CD146+ stem cells obtained from the human umbilical cord and their extracellular matrix proteins on in vitro Pseudomonas aeruginosa and Staphylococcus aureus biofilms to understand their possible antimicrobial activity. CD146+ stem cells were determined according to cell surface markers and differentiation capacity. Characterization of the decellularized matrix was done with DAPI, Masson's Trichrome staining and proteome analysis. Cell viability/proliferation of cells in co-cultures was evaluated by WST-1 and crystal-violet staining. The effects of cells and decellularized matrix proteins on biofilms were investigated on a drip flow biofilm reactor and their effects on gene expression were determined by RT-qPCR. We observed that CD146/105+ stem cells could differentiate adipogenically and decellularized matrix showed negative DAPI and positive collagen staining with Masson' s Trichrome. Proteome analysis of the decellularized matrix revealed some matrix components and growth factors. Although the decellularized matrix significantly reduced the cell counts of P. aeruginosa, no significant difference was observed for S. aureus cells in both groups. Supporting data was obtained from the gene expression results of P. aeruginosa with the significant down-regulation of rhlR and lasR. For S. aureus, icaADBC genes were significantly up-regulated when grown on the decellularized matrix.
Collapse
Affiliation(s)
- Nur Kübra Çankirili
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Didem Kart
- Department of Pharmaceutical Microbiology, Hacettepe University Faculty of Pharmacy, 06100, Sihhiye, Ankara, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara, Turkey.
- Center for Stem Cell Research and Development, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
4
|
Gökçinar-Yagci B, Karaosmanoglu B, Taskiran EZ, Çelebi-Saltik B. Transcriptome and proteome profiles of human umbilical cord vein CD146+ stem cells. Mol Biol Rep 2020; 47:3833-3856. [PMID: 32361895 DOI: 10.1007/s11033-020-05474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/25/2020] [Indexed: 10/24/2022]
Abstract
In this study we used two different techniques in order to isolate pericytes from the wall of human umbilical cord vein and get two different groups of cells were named as "pellet and primer cells". These groups were compared with each other according to their morphologies and stem cell marker expressions. Also, these two different populations were compared with each other and with human bone marrow mesenchymal stem cells (BM-MSCs) according to their transcriptomic profiles. Then, pellet cells proteomic profiles were determined. Our results showed that morphologies and cell surface marker expressions of pellet cells and primer cells are similar. On the other hand, according to immunofluorescence staining results, in contrast to primer cells, pellet cells showed positive NG2 and PDGFR-β staining. As a result of gene expression profiling, pellet cells have upregulated genes related with muscle, neural and immune cell differentiation, development and pluripotency. On the other hand, primer cells have upregulated adhesion pathway-related genes. In addition to differences between pellet and primer cells, the gene expression profiles of these cell groups are also different from BM-MSCs. The results of transcriptome and proteome analysis of pellet cells were in consistent with each other.
Collapse
Affiliation(s)
- Beyza Gökçinar-Yagci
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, 06100, Ankara, Turkey.,Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
| | - Beren Karaosmanoglu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Sihhiye, 06100, Ankara, Turkey
| | - Ekim Zihni Taskiran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Sihhiye, 06100, Ankara, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, 06100, Ankara, Turkey. .,Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.
| |
Collapse
|
5
|
Uretmen Kagiali ZC, Sanal E, Karayel Ö, Polat AN, Saatci Ö, Ersan PG, Trappe K, Renard BY, Önder TT, Tuncbag N, Şahin Ö, Ozlu N. Systems-level Analysis Reveals Multiple Modulators of Epithelial-mesenchymal Transition and Identifies DNAJB4 and CD81 as Novel Metastasis Inducers in Breast Cancer. Mol Cell Proteomics 2019; 18:1756-1771. [PMID: 31221721 PMCID: PMC6731077 DOI: 10.1074/mcp.ra119.001446] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/21/2019] [Indexed: 01/01/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is driven by complex signaling events that induce dramatic biochemical and morphological changes whereby epithelial cells are converted into cancer cells. However, the underlying molecular mechanisms remain elusive. Here, we used mass spectrometry based quantitative proteomics approach to systematically analyze the post-translational biochemical changes that drive differentiation of human mammary epithelial (HMLE) cells into mesenchymal. We identified 314 proteins out of more than 6,000 unique proteins and 871 phosphopeptides out of more than 7,000 unique phosphopeptides as differentially regulated. We found that phosphoproteome is more unstable and prone to changes during EMT compared with the proteome and multiple alterations at proteome level are not thoroughly represented by transcriptional data highlighting the necessity of proteome level analysis. We discovered cell state specific signaling pathways, such as Hippo, sphingolipid signaling, and unfolded protein response (UPR) by modeling the networks of regulated proteins and potential kinase-substrate groups. We identified two novel factors for EMT whose expression increased on EMT induction: DnaJ heat shock protein family (Hsp40) member B4 (DNAJB4) and cluster of differentiation 81 (CD81). Suppression of DNAJB4 or CD81 in mesenchymal breast cancer cells resulted in decreased cell migration in vitro and led to reduced primary tumor growth, extravasation, and lung metastasis in vivo Overall, we performed the global proteomic and phosphoproteomic analyses of EMT, identified and validated new mRNA and/or protein level modulators of EMT. This work also provides a unique platform and resource for future studies focusing on metastasis and drug resistance.
Collapse
Affiliation(s)
| | - Erdem Sanal
- ‡Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Özge Karayel
- ‡Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Ayse Nur Polat
- ‡Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Özge Saatci
- §Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208
| | - Pelin Gülizar Ersan
- ¶Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Kathrin Trappe
- ‖Bioinformatics Unit (MF1), Robert Koch Institute, 13353 Berlin, Germany
| | - Bernhard Y Renard
- ‖Bioinformatics Unit (MF1), Robert Koch Institute, 13353 Berlin, Germany
| | - Tamer T Önder
- **Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey; ‡‡School of Medicine, Koç University, 34450 Istanbul, Turkey
| | - Nurcan Tuncbag
- §§Graduate School of Informatics, Department of Health Informatics, METU, 06800 Ankara, Turkey; ¶¶Cancer Systems Biology Laboratory (CanSyL), METU, 06800 Ankara, Turkey
| | - Özgür Şahin
- §Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208; ¶Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Nurhan Ozlu
- ‡Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey; **Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey.
| |
Collapse
|
6
|
Toyoda Y, Akarlar B, Sarov M, Ozlu N, Saitoh S. Extracellular glucose level regulates dependence on
GRP
78 for cell surface localization of multipass transmembrane proteins in HeLa cells. FEBS Lett 2018; 592:3295-3304. [PMID: 30156266 DOI: 10.1002/1873-3468.13232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Affiliation(s)
| | - Busra Akarlar
- Department of Molecular Biology and Genetics Koc University Istanbul Turkey
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics Koc University Istanbul Turkey
| | | |
Collapse
|
7
|
Özkan Küçük NE, Şanal E, Tan E, Mitchison T, Özlü N. Labeling Carboxyl Groups of Surface-Exposed Proteins Provides an Orthogonal Approach for Cell Surface Isolation. J Proteome Res 2018; 17:1784-1793. [PMID: 29651847 DOI: 10.1021/acs.jproteome.7b00825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quantitative profiling of cell surface proteins is critically important for the understanding of cell-cell communication, signaling, tissue development, and homeostasis. Traditional proteomics methods are challenging for cell surface proteins due to their hydrophobic nature and low abundance, necessitating alternative methods to efficiently identify and quantify this protein group. Here we established carboxyl-reactive biotinylation for selective and efficient biotinylation and isolation of surface-exposed proteins of living cells. We assessed the efficiency of carboxyl-reactive biotinylation for plasma membrane proteins by comparing it with a well-established protocol, amine-reactive biotinylation, using SILAC (stable isotope labeling in cell culture). Our results show that carboxyl-reactive biotinylation of cell surface proteins is both more selective and more efficient than amine-reactive biotinylation. We conclude that it is a useful approach, which is partially orthogonal to amine-reactive biotinylation, allowing us to cast a wider net for a comprehensive profiling of cell surface proteins.
Collapse
Affiliation(s)
- Nazlı E Özkan Küçük
- Department of Molecular Biology and Genetics , Koç University , Istanbul 34450 , Turkey
| | - Erdem Şanal
- Department of Molecular Biology and Genetics , Koç University , Istanbul 34450 , Turkey
| | - Edwin Tan
- Department of Systems Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Timothy Mitchison
- Department of Systems Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Nurhan Özlü
- Department of Molecular Biology and Genetics , Koç University , Istanbul 34450 , Turkey
| |
Collapse
|
8
|
Karayel Ö, Şanal E, Giese SH, Üretmen Kagıalı ZC, Polat AN, Hu CK, Renard BY, Tuncbag N, Özlü N. Comparative phosphoproteomic analysis reveals signaling networks regulating monopolar and bipolar cytokinesis. Sci Rep 2018; 8:2269. [PMID: 29396449 PMCID: PMC5797227 DOI: 10.1038/s41598-018-20231-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/05/2018] [Indexed: 01/21/2023] Open
Abstract
The successful completion of cytokinesis requires the coordinated activities of diverse cellular components including membranes, cytoskeletal elements and chromosomes that together form partly redundant pathways, depending on the cell type. The biochemical analysis of this process is challenging due to its dynamic and rapid nature. Here, we systematically compared monopolar and bipolar cytokinesis and demonstrated that monopolar cytokinesis is a good surrogate for cytokinesis and it is a well-suited system for global biochemical analysis in mammalian cells. Based on this, we established a phosphoproteomic signature of cytokinesis. More than 10,000 phosphorylation sites were systematically monitored; around 800 of those were up-regulated during cytokinesis. Reconstructing the kinase-substrate interaction network revealed 31 potentially active kinases during cytokinesis. The kinase-substrate network connects proteins between cytoskeleton, membrane and cell cycle machinery. We also found consensus motifs of phosphorylation sites that can serve as biochemical markers specific to cytokinesis. Beyond the kinase-substrate network, our reconstructed signaling network suggests that combination of sumoylation and phosphorylation may regulate monopolar cytokinesis specific signaling pathways. Our analysis provides a systematic approach to the comparison of different cytokinesis types to reveal alternative ways and a global overview, in which conserved genes work together and organize chromatin and cytoplasm during cytokinesis.
Collapse
Affiliation(s)
- Özge Karayel
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Erdem Şanal
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Sven H Giese
- Bioinformatics Division (MF1), Robert Koch Institute, Berlin, Germany
- Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | | - Ayşe Nur Polat
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Chi-Kuo Hu
- Department of Genetics, Stanford University, School of Medicine, CA, USA
| | - Bernhard Y Renard
- Bioinformatics Division (MF1), Robert Koch Institute, Berlin, Germany
| | - Nurcan Tuncbag
- Graduate School of Informatics, Department of Health Informatics, METU, Ankara, Turkey
- Cancer Systems Biology Laboratory (CanSyL), METU, Ankara, Turkey
| | - Nurhan Özlü
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
| |
Collapse
|
9
|
Üretmen Kagıalı ZC, Şentürk A, Özkan Küçük NE, Qureshi MH, Özlü N. Proteomics in Cell Division. Proteomics 2017; 17. [PMID: 28548456 DOI: 10.1002/pmic.201600100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/07/2017] [Indexed: 11/08/2022]
Abstract
Cell division requires a coordinated action of the cell cycle machinery, cytoskeletal elements, chromosomes, and membranes. Cell division studies have greatly benefitted from the mass spectrometry (MS)-based proteomic approaches for probing the biochemistry of highly dynamic complexes and their coordination with each other as a cell progresses into division. In this review, the authors first summarize a wide-range of proteomic studies that focus on the identification of sub-cellular components/protein complexes of the cell division machinery including kinetochores, mitotic spindle, midzone, and centrosomes. The authors also highlight MS-based large-scale analyses of the cellular components that are largely understudied during cell division such as the cell surface and lipids. Then, the authors focus on posttranslational modification analyses, especially phosphorylation and the resulting crosstalk with other modifications as a cell undergoes cell division. Combining proteomic approaches that probe the biochemistry of cell division components with functional genomic assays will lead to breakthroughs toward a systems-level understanding of cell division.
Collapse
Affiliation(s)
| | - Aydanur Şentürk
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | | | - Mohammad Haroon Qureshi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.,Biomedical Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Nurhan Özlü
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| |
Collapse
|
10
|
Venerando A, Cesaro L, Pinna LA. From phosphoproteins to phosphoproteomes: a historical account. FEBS J 2017; 284:1936-1951. [PMID: 28079298 DOI: 10.1111/febs.14014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/20/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
The first phosphoprotein (casein) was discovered in 1883, yet the enzyme responsible for its phosphorylation was identified only 130 years later, in 2012. In the intervening time, especially in the last decades of the 1900s, it became evident that, far from being an oddity, phosphorylation affects the majority of eukaryotic proteins during their lifespan, and that this reaction is catalysed by the members of a large family of protein kinases, susceptible to a variety of stimuli controlling nearly every aspect of life and death. The aim of this review is to present a historical account of the main steps of this spectacular revolution, which transformed our conception of a biochemical reaction originally held as a sporadic curiosity into the master mechanism governing cell regulation, and, if it is perturbed, causing cell dysregulation.
Collapse
Affiliation(s)
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Italy.,CNR Neuroscience Institute, Padova, Italy
| |
Collapse
|
11
|
Late mitotic functions of Aurora kinases. Chromosoma 2016; 126:93-103. [DOI: 10.1007/s00412-016-0594-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
|