1
|
Srivastava R, Singh N, Kanda T, Yadav S, Yadav S, Atri N. Cyanobacterial Proteomics: Diversity and Dynamics. J Proteome Res 2024; 23:2680-2699. [PMID: 38470568 DOI: 10.1021/acs.jproteome.3c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Cyanobacteria (oxygenic photoautrophs) comprise a diverse group holding significance both environmentally and for biotechnological applications. The utilization of proteomic techniques has significantly influenced investigations concerning cyanobacteria. Application of proteomics allows for large-scale analysis of protein expression and function within cyanobacterial systems. The cyanobacterial proteome exhibits tremendous functional, spatial, and temporal diversity regulated by multiple factors that continuously modify protein abundance, post-translational modifications, interactions, localization, and activity to meet the dynamic needs of these tiny blue greens. Modern mass spectrometry-based proteomics techniques enable system-wide examination of proteome complexity through global identification and high-throughput quantification of proteins. These powerful approaches have revolutionized our understanding of proteome dynamics and promise to provide novel insights into integrated cellular behavior at an unprecedented scale. In this Review, we present modern methods and cutting-edge technologies employed for unraveling the spatiotemporal diversity and dynamics of cyanobacterial proteomics with a specific focus on the methods used to analyze post-translational modifications (PTMs) and examples of dynamic changes in the cyanobacterial proteome investigated by proteomic approaches.
Collapse
Affiliation(s)
| | - Nidhi Singh
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Tripti Kanda
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Sadhana Yadav
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Shivam Yadav
- Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Neelam Atri
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
2
|
Elucidation of the coping strategy in an OMP homozygous knockout mutant of Synechocystis 6803 defective in iron uptake. Arch Microbiol 2022; 204:358. [DOI: 10.1007/s00203-022-02968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
|
3
|
Yunus IS, Lee TS. Applications of targeted proteomics in metabolic engineering: advances and opportunities. Curr Opin Biotechnol 2022; 75:102709. [DOI: 10.1016/j.copbio.2022.102709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/22/2022]
|
4
|
Pascual J, Kangasjärvi S. Targeted Mass Spectrometry Analysis of Protein Phosphorylation by Selected Ion Monitoring Coupled to Parallel Reaction Monitoring (tSIM/PRM). Methods Mol Biol 2022; 2526:227-240. [PMID: 35657524 DOI: 10.1007/978-1-0716-2469-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent developments in targeted mass spectrometry-based proteomics have provided new methodological solutions for accurate and quantitative analysis of proteins and their posttranslational control, which has significantly advanced our understanding of stress responses in different plant species. Instrumentation allowing high-resolution, accurate-mass (HR/AM) analysis has provided new acquisition strategies for targeted quantitative proteomic analysis by targeted selected ion monitoring (tSIM) and parallel reaction monitoring (PRM). Here we report a sensitive and accurate method for targeted analysis of protein phosphorylation by tSIM coupled to PRM (tSIM/PRM). The tSIM/PRM method takes advantage of HR/AM mass spectrometers and benefits from the combination of highly sensitive precursor ion quantification by tSIM and highly confident peptide identification by spectral library matching in PRM. The detailed protocol describes tSIM/PRM analysis of Arabidopsis thaliana foliar proteins, from the building of a spectral library to sample preparation, mass spectrometry, and data analysis, and provides a methodological approach for specifying the molecular mechanisms of interest.
Collapse
Affiliation(s)
- Jesús Pascual
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Saijaliisa Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FIN-00014 University of Helsinki, Helsinki, Finland.
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, FIN-00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Ellepola K, Huang X, Riley RP, Bitoun JP, Wen ZT. Streptococcus mutans Lacking sufCDSUB Is Viable, but Displays Major Defects in Growth, Stress Tolerance Responses and Biofilm Formation. Front Microbiol 2021; 12:671533. [PMID: 34248879 PMCID: PMC8264796 DOI: 10.3389/fmicb.2021.671533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans appears to possess a sole iron-sulfur (Fe-S) cluster biosynthesis system encoded by the sufCDSUB cluster. This study was designed to examine the role of sufCDSUB in S. mutans physiology. Allelic exchange mutants deficient of the whole sufCDSUB cluster and in individual genes were constructed. Compared to the wild-type, UA159, the sufCDSUB-deficient mutant, Δsuf::kanr, had a significantly reduced growth rate, especially in medium with the absence of isoleucine, leucine or glutamate/glutamine, amino acids that require Fe-S clusters for biosynthesis and when grown with medium adjusted to pH 6.0 and under oxidative and nitrosative stress conditions. Relative to UA159, Δsuf::kanr had major defects in stress tolerance responses with reduced survival rate of > 2-logs following incubation at low pH environment or after hydrogen peroxide challenge. When compared to UA159, Δsuf::kanr tended to form aggregates in broth medium and accumulated significantly less biofilm. As shown by luciferase reporter fusion assays, the expression of sufCDSUB was elevated by > 5.4-fold when the reporter strain was transferred from iron sufficient medium to iron-limiting medium. Oxidative stress induced by methyl viologen increased sufCDSUB expression by > 2-fold, and incubation in a low pH environment led to reduction of sufCDSUB expression by > 7-fold. These results suggest that lacking of SufCDSUB in S. mutans causes major defects in various cellular processes of the deficient mutant, including growth, stress tolerance responses and biofilm formation. In addition, the viability of the deficient mutant also suggests that SUF, the sole Fe-S cluster machinery identified is non-essential in S. mutans, which is not known in any other bacterium lacking the NIF and/or ISC system. However, how the bacterium compensates the Fe-S deficiency and if any novel Fe-S assembly systems exist in this bacterium await further investigation.
Collapse
Affiliation(s)
- Kassapa Ellepola
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Xiaochang Huang
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Ryan P Riley
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob P Bitoun
- Department of Microbiology, Tulane University, New Orleans, LA, United States
| | - Zezhang Tom Wen
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
6
|
Toyoshima M, Sakata M, Ueno Y, Toya Y, Matsuda F, Akimoto S, Shimizu H. Proteome analysis of response to different spectral light irradiation in Synechocystis sp. PCC 6803. J Proteomics 2021; 246:104306. [PMID: 34157441 DOI: 10.1016/j.jprot.2021.104306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/27/2022]
Abstract
In cyanobacteria, it is known that the excitation ratios of photosystem (PS) I and PSII changes with the wavelength of irradiated light due to mobile phycobilisome (PBS) and spillover, affecting the photosynthetic ATP/NADPH synthesis ratio and metabolic flux state. However, the mechanisms by which these changes are controlled have not been well studied. In this study, we performed a targeted proteomic analysis of Synechocystis sp. PCC 6803 under different spectral light conditions to clarify the regulation mechanisms of mobile PBS, spillover and metabolisms under different light qualities at the protein level. The results showed an increase in the amount of proteins mainly involved in CO2 fixation under Red1 light conditions with a high specific growth rate, suggesting that the rate of intracellular metabolism is controlled by the rate of carbon uptake, not by changes in the amount of each enzyme. Correlation analysis between protein levels and PSI/PSII excitation ratios revealed that PsbQUY showed high correlations and significantly increased under Blue and Red2 light conditions, where the PSI/PSII excitation ratio was higher due to spillover. In the strains lacking the genes encoding these proteins, a decrease in the PSI/PSII excitation ratio was observed, suggesting that PsbQUY contribute to spillover occurrence. SIGNIFICANCE: In cyanobacteria, the photosynthetic apparatus's responses, such as state transition [mobile PBS and spillover], occur due to the intensity and wavelength of irradiated light, resulting in changes in photosynthetic electron transport and metabolic flux states. Previous studies have analyzed the response of Synechocystis sp. PCC 6803 to light intensity from various directions, but only spectroscopic analysis of the photosynthetic apparatus has been done on the response to changes in the wavelength of irradiated light. This study analyzed the response mechanisms of mobile PBS, spillover, photosynthetic, and metabolic systems in Synechocystis sp. PCC 6803 under six different spectral light conditions by a targeted proteomic analysis. As a result, many proteins were successfully quantified, and the metabolic enzymes and photosynthetic apparatus were analyzed using an integrated approach. Principal component and correlation analyses and volcano plots revealed that the PSII subunits PsbQ, PsbU, and PsbY have a strong correlation with the PSI/PSII excitation ratio and contribute to spillover occurrence. Thus, statistical analysis based on proteome data revealed that PsbQ, PsbU, and PsbY are involved in spillover, as revealed by spectroscopic analysis.
Collapse
Affiliation(s)
- Masakazu Toyoshima
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masumi Sakata
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
7
|
Transcriptome Analysis Reveals IsiA-Regulatory Mechanisms Underlying Iron Depletion and Oxidative-Stress Acclimation in Synechocystis sp. Strain PCC 6803. Appl Environ Microbiol 2020; 86:AEM.00517-20. [PMID: 32332138 DOI: 10.1128/aem.00517-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/19/2020] [Indexed: 12/22/2022] Open
Abstract
Microorganisms in nature are commonly exposed to various stresses in parallel. The isiA gene encodes an iron stress-induced chlorophyll-binding protein which is significantly induced under iron starvation and oxidative stress. Acclimation of oxidative stress and iron deficiency was investigated using a regulatory mutant of the Synechocystis sp. strain PCC 6803. In this study, the ΔisiA mutant grew more slowly in oxidative-stress and iron depletion conditions compared to the wild-type (WT) counterpart under the same conditions. Thus, we performed transcriptome sequencing (RNA-seq) analysis of the WT strain and the ΔisiA mutant under double-stress conditions to obtain a comprehensive view of isiA-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed significant differences between the WT strain and ΔisiA mutant, mainly related to photosynthesis and the iron-sulfur cluster. The deletion of isiA affects the expression of various genes that are involved in cellular processes and structures, such as photosynthesis, phycobilisome, and the proton-transporting ATPase complex. Weighted gene coexpression network analysis (WGCNA) demonstrated three functional modules in which the turquoise module was negatively correlated with superoxide dismutase (SOD) activity. Coexpression network analysis identified several hub genes of each module. Cotranscriptional PCR and reads coverage using the Integrative Genomics Viewer demonstrated that isiA, isiB, isiC, ssl0461, and dfp belonged to the isi operon. Three sRNAs related to oxidative stress were identified. This study enriches our knowledge of IsiA-regulatory mechanisms under iron deficiency and oxidative stress.IMPORTANCE This study analyzed the impact of isiA deletion on the transcriptomic profile of Synechocystis The isiA gene encodes an iron stress-induced chlorophyll-binding protein, which is significantly induced under iron starvation. The deletion of isiA affects the expression of various genes that are involved in photosynthesis and ABC transporters. WGCNA revealed three functional modules in which the blue module was correlated with oxidative stress. We further demonstrated that the isi operon contained the following five genes: isiA, isiB, isiC, ssl0461, and dfp by cotranscriptional PCR. Three sRNAs were identified that were related to oxidative stress. This study enhances our knowledge of IsiA-regulatory mechanisms under iron deficiency and oxidative stress.
Collapse
|
8
|
Bartasun P, Prandi N, Storch M, Aknin Y, Bennett M, Palma A, Baldwin G, Sakuragi Y, Jones PR, Rowland J. The effect of modulating the quantity of enzymes in a model ethanol pathway on metabolic flux in Synechocystis sp. PCC 6803. PeerJ 2019; 7:e7529. [PMID: 31523505 PMCID: PMC6717505 DOI: 10.7717/peerj.7529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022] Open
Abstract
Synthetic metabolism allows new metabolic capabilities to be introduced into strains for biotechnology applications. Such engineered metabolic pathways are unlikely to function optimally as initially designed and native metabolism may not efficiently support the introduced pathway without further intervention. To develop our understanding of optimal metabolic engineering strategies, a two-enzyme ethanol pathway consisting of pyruvate decarboxylase and acetaldehyde reductase was introduced into Synechocystis sp. PCC 6803. We characteriseda new set of ribosome binding site sequences in Synechocystis sp. PCC 6803 providing a range of translation strengths for different genes under test. The effect of ribosome-bindingsite sequence, operon design and modifications to native metabolism on pathway flux was analysed by HPLC. The accumulation of all introduced proteins was also quantified using selected reaction monitoring mass spectrometry. Pathway productivity was more strongly dependent on the accumulation of pyruvate decarboxylase than acetaldehyde reductase. In fact, abolishment of reductase over-expression resulted in the greatest ethanol productivity, most likely because strains harbouringsingle-gene constructs accumulated more pyruvate decarboxylase than strains carrying any of the multi-gene constructs. Overall, several lessons were learned. Firstly, the expression level of the first gene in anyoperon influenced the expression level of subsequent genes, demonstrating that translational coupling can also occur in cyanobacteria. Longer operons resulted in lower protein abundance for proximally-encoded cistrons. And, implementation of metabolic engineering strategies that have previously been shown to enhance the growth or yield of pyruvate dependent products, through co-expression with pyruvate kinase and/or fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase, indicated that other factors had greater control over growth and metabolic flux under the tested conditions.
Collapse
Affiliation(s)
- Paulina Bartasun
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nicole Prandi
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Marko Storch
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Yarin Aknin
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | - Mark Bennett
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Arianna Palma
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Geoff Baldwin
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - John Rowland
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Huokko T, Muth-Pawlak D, Aro EM. Thylakoid Localized Type 2 NAD(P)H Dehydrogenase NdbA Optimizes Light-Activated Heterotrophic Growth of Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2019; 60:1386-1399. [PMID: 30847494 PMCID: PMC6553663 DOI: 10.1093/pcp/pcz044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/26/2019] [Indexed: 05/08/2023]
Abstract
NdbA, one of the three type 2 NAD(P)H dehydrogenases (NDH-2) in Synechocystis sp. PCC 6803 (hereafter Synechocystis) was here localized to the thylakoid membrane (TM), unique for the three NDH-2s, and investigated with respect to photosynthetic and cellular redox metabolism. For this purpose, a deletion mutant (ΔndbA) and a complementation strain overexpressing NdbA (ΔndbA::ndbA) were constructed. It is demonstrated that NdbA is expressed at very low level in the wild-type (WT) Synechocystis under photoautotrophic (PA) growth whilst substantially higher expression occurs under light-activated heterotrophic growth (LAHG). The absence of NdbA resulted in non-optimal growth of Synechocystis under LAHG and concomitantly enhanced the expression of photoprotection-related flavodiiron proteins and carbon acquisition-related proteins as well as various transporters, but downregulated a few iron homeostasis-related proteins. NdbA overexpression, on the other hand, promoted photosynthetic pigmentation and functionality of photosystem I under LAHG conditions while distinct photoprotective and carbon concentrating proteins were downregulated. NdbA overexpression also exerted an effect on the expression of many signaling and gene regulation proteins. It is concluded that the amount and function of NdbA in the TM has a capacity to modulate the redox signaling of gene expression, but apparently has a major physiological role in maintaining iron homeostasis under LAHG conditions. LC-MS/MS data are available via ProteomeXchange with identifier PXD011671.
Collapse
Affiliation(s)
- Tuomas Huokko
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Tykist�katu 6 A, Turku FI, Finland
| | - Dorota Muth-Pawlak
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Tykist�katu 6 A, Turku FI, Finland
| | - Eva-Mari Aro
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Tykist�katu 6 A, Turku FI, Finland
- Corresponding author: E-mail, ; Fax, +358 (0)29 450 5040
| |
Collapse
|
10
|
Battchikova N, Muth-Pawlak D, Aro EM. Proteomics of cyanobacteria: current horizons. Curr Opin Biotechnol 2018; 54:65-71. [DOI: 10.1016/j.copbio.2018.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 12/01/2022]
|
11
|
Yunus IS, Jones PR. Photosynthesis-dependent biosynthesis of medium chain-length fatty acids and alcohols. Metab Eng 2018; 49:59-68. [DOI: 10.1016/j.ymben.2018.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/27/2022]
|
12
|
Comparative Targeted Proteomics of the Central Metabolism and Photosystems in SigE Mutant Strains of Synechocystis sp. PCC 6803. Molecules 2018; 23:molecules23051051. [PMID: 29723969 PMCID: PMC6102573 DOI: 10.3390/molecules23051051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022] Open
Abstract
A targeted proteome analysis was conducted to investigate the SigE dependent-regulation of central metabolism in Synechocystis sp. PCC 6803 by directly comparing the protein abundance profiles among the wild type, a sigE deletion mutant (ΔsigE), and a sigE over-expression (sigEox) strains. Expression levels of 112 target proteins, including the central metabolism related-enzymes and the subunits of the photosystems, were determined by quantifying the tryptic peptides in the multiple reaction monitoring (MRM) mode of liquid-chromatography–triple quadrupole mass spectrometry (LC–MS/MS). Comparison with gene-expression data showed that although the abundance of Gnd protein was closely correlated with that of gnd mRNA, there were poor correlations for GdhA/gdhA and glycogen degradation-related genes such as GlgX/glgX and GlgP/glgP pairs. These results suggested that the regulation of protein translation and degradation played a role in regulating protein abundance. The protein abundance profile suggested that SigE overexpression reduced the proteins involved in photosynthesis and increased GdhA abundance, which is involved in the nitrogen assimilation pathway using NADPH. The results obtained in this study successfully demonstrated that targeted proteome analysis enables direct comparison of the abundance of central metabolism- and photosystem-related proteins.
Collapse
|
13
|
Hagemann M, Hess WR. Systems and synthetic biology for the biotechnological application of cyanobacteria. Curr Opin Biotechnol 2017; 49:94-99. [PMID: 28843192 DOI: 10.1016/j.copbio.2017.07.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Cyanobacteria are the only prokaryotes that perform oxygenic photosynthesis. Their evolutionary relation to plastids in eukaryotic phototrophs and their increasing utilization as green cell factories initiated the use of systems biology approaches early on. For select model strains, extensive 'omics' data sets have been generated, and genome-wide models have been elucidated. Moreover, the results obtained may be used for the optimization of cyanobacterial metabolism, which can direct the biotechnological production of biofuels or chemical feedstock. Synthetic biology approaches permit the rational construction of novel metabolic pathways that are based on the combination of multiple enzymatic activities of different origins. In addition, the manipulation of whole metabolic networks by CRISPR-based and sRNA-based technologies with multiple parallel targets will further stimulate the use of cyanobacteria for diverse applications in basic research and biotechnology.
Collapse
Affiliation(s)
- Martin Hagemann
- University of Rostock, Institute of Biological Sciences, Plant Physiology, A.-Einstein-Str. 3, D-18059 Rostock, Germany.
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Schänzlestr. 1, D-79104 Freiburg, Germany
| |
Collapse
|
14
|
Matsuda F, Tomita A, Shimizu H. Prediction of Hopeless Peptides Unlikely to be Selected for Targeted Proteome Analysis. ACTA ACUST UNITED AC 2017; 6:A0056. [PMID: 28580222 PMCID: PMC5451515 DOI: 10.5702/massspectrometry.a0056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/23/2017] [Indexed: 12/03/2022]
Abstract
In targeted proteomics using liquid chromatography-tandem triple quadrupole mass spectrometry (LC/MS/MS) in the selected reaction monitoring (SRM) mode, selecting the best observable or visible peptides is a key step in the development of SRM assay methods of target proteins. A direct comparison of signal intensities among all candidate peptides by brute-force LC/MS/MS analysis is a concrete approach for peptide selection. However, the analysis requires an SRM method with hundreds of transitions. This study reports on the development of a method for predicting and identifying hopeless peptides to reduce the number of candidate peptides needed for brute-force experiments. Hopeless peptides are proteotypic peptides that are unlikely to be selected for targets in SRM analysis owing to their poor ionization characteristics. Targeted proteomics data from Escherichia coli demonstrated that the relative ionization efficiency between two peptides could be predicted from sequences of two peptides, when a multivariate regression model is used. Validation of the method showed that >20% of the candidate peptides could be successfully eliminated as hopeless peptides with a false positive rate of less than 2%.
Collapse
Affiliation(s)
- Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University.,RIKEN Center for Sustainable Resource Science
| | - Atsumi Tomita
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| |
Collapse
|
15
|
Georg J, Kostova G, Vuorijoki L, Schön V, Kadowaki T, Huokko T, Baumgartner D, Müller M, Klähn S, Allahverdiyeva Y, Hihara Y, Futschik ME, Aro EM, Hess WR. Acclimation of Oxygenic Photosynthesis to Iron Starvation Is Controlled by the sRNA IsaR1. Curr Biol 2017; 27:1425-1436.e7. [PMID: 28479323 DOI: 10.1016/j.cub.2017.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/01/2023]
Abstract
Oxygenic photosynthesis crucially depends on proteins that possess Fe2+ or Fe/S complexes as co-factors or prosthetic groups. Here, we show that the small regulatory RNA (sRNA) IsaR1 (Iron-Stress-Activated RNA 1) plays a pivotal role in acclimation to low-iron conditions. The IsaR1 regulon consists of more than 15 direct targets, including Fe2+-containing proteins involved in photosynthetic electron transfer, detoxification of anion radicals, citrate cycle, and tetrapyrrole biogenesis. IsaR1 is essential for maintaining physiological levels of Fe/S cluster biogenesis proteins during iron deprivation. Consequently, IsaR1 affects the acclimation of the photosynthetic apparatus to iron starvation at three levels: (1) directly, via posttranscriptional repression of gene expression; (2) indirectly, via suppression of pigment; and (3) Fe/S cluster biosynthesis. Homologs of IsaR1 are widely conserved throughout the cyanobacterial phylum. We conclude that IsaR1 is a critically important riboregulator. These findings provide a new perspective for understanding the regulation of iron homeostasis in photosynthetic organisms.
Collapse
Affiliation(s)
- Jens Georg
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Gergana Kostova
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Linda Vuorijoki
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Verena Schön
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Taro Kadowaki
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Tuomas Huokko
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Desirée Baumgartner
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Maximilian Müller
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Stephan Klähn
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Matthias E Futschik
- CCMAR - Center of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
16
|
SRM dataset of the proteome of inactivated iron-sulfur cluster biogenesis regulator SufR in Synechocystis sp. PCC 6803. Data Brief 2017; 11:572-575. [PMID: 28349105 PMCID: PMC5358945 DOI: 10.1016/j.dib.2017.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/07/2017] [Indexed: 11/25/2022] Open
Abstract
This article contains SRM proteomics data related to the research article entitled”Inactivation of iron-sulfur cluster biogenesis regulator SufR in Synechocystis sp. PCC 6803 induces unique iron-dependent protein-level responses” (L. Vuorijoki, A. Tiwari, P. Kallio, E.M. Aro, 2017) [1]. The data described here provide comprehensive information on the applied SRM assays, together with the results of quantifying 94 Synechocystis sp. PCC 6803 proteins. The data has been deposited in Panorama public (https://panoramaweb.org/labkey/SufR) and in PASSEL under the PASS00765 identifier (http://www.peptideatlas.org/PASS/PASS00765).
Collapse
|
17
|
Vuorijoki L, Tiwari A, Kallio P, Aro EM. Inactivation of iron-sulfur cluster biogenesis regulator SufR in Synechocystis sp. PCC 6803 induces unique iron-dependent protein-level responses. Biochim Biophys Acta Gen Subj 2017; 1861:1085-1098. [PMID: 28216046 DOI: 10.1016/j.bbagen.2017.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/31/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Iron-sulfur (Fe-S) clusters are protein-bound cofactors associated with cellular electron transport and redox sensing, with multiple specific functions in oxygen-evolving photosynthetic cyanobacteria. The aim here was to elucidate protein-level effects of the transcriptional repressor SufR involved in the regulation of Fe-S cluster biogenesis in the cyanobacterium Synechocystis sp. PCC 6803. METHODS The approach was to quantitate 94 pre-selected target proteins associated with various metabolic functions using SRM in Synechocystis. The evaluation was conducted in response to sufR deletion under different iron conditions, and complemented with EPR analysis on the functionality of the photosystems I and II as well as with RT-qPCR to verify the effects of SufR also on transcript level. RESULTS The results on both protein and transcript levels show that SufR acts not only as a repressor of the suf operon when iron is available but also has other direct and indirect functions in the cell, including maintenance of the expression of pyruvate:ferredoxin oxidoreductase NifJ and other Fe-S cluster proteins under iron sufficient conditions. Furthermore, the results imply that in the absence of iron the suf operon is repressed by some additional regulatory mechanism independent of SufR. CONCLUSIONS The study demonstrates that Fe-S cluster metabolism in Synechocystis is stringently regulated, and has complex interactions with multiple primary functions in the cell, including photosynthesis and central carbon metabolism. GENERAL SIGNIFICANCE The study provides new insight into the regulation of Fe-S cluster biogenesis via suf operon, and the associated wide-ranging protein-level changes in photosynthetic cyanobacteria.
Collapse
Affiliation(s)
- Linda Vuorijoki
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Arjun Tiwari
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Pauli Kallio
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
18
|
Angeleri M, Muth-Pawlak D, Aro EM, Battchikova N. Study of O-Phosphorylation Sites in Proteins Involved in Photosynthesis-Related Processes in Synechocystis sp. Strain PCC 6803: Application of the SRM Approach. J Proteome Res 2016; 15:4638-4652. [DOI: 10.1021/acs.jproteome.6b00732] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Martina Angeleri
- Molecular Plant Biology,
Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Dorota Muth-Pawlak
- Molecular Plant Biology,
Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology,
Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Natalia Battchikova
- Molecular Plant Biology,
Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
19
|
Mustila H, Paananen P, Battchikova N, Santana-Sánchez A, Muth-Pawlak D, Hagemann M, Aro EM, Allahverdiyeva Y. The Flavodiiron Protein Flv3 Functions as a Homo-Oligomer During Stress Acclimation and is Distinct from the Flv1/Flv3 Hetero-Oligomer Specific to the O2 Photoreduction Pathway. PLANT & CELL PHYSIOLOGY 2016; 57:1468-1483. [PMID: 26936793 PMCID: PMC4937785 DOI: 10.1093/pcp/pcw047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/23/2016] [Indexed: 05/06/2023]
Abstract
The flavodiiron proteins (FDPs) Flv1 and Flv3 in cyanobacteria function in photoreduction of O2 to H2O, without concomitant formation of reactive oxygen species, known as the Mehler-like reaction. Both Flv1 and Flv3 are essential for growth under fluctuating light (FL) intensities, providing protection for PSI. Here we compared the global transcript profiles of the wild type (WT), Δflv1 and Δflv1/Δflv3 grown under constant light (GL) and FL. In the WT, FL induced the largest down-regulation in transcripts involved in carbon-concentrating mechanisms (CCMs), while those of the nitrogen assimilation pathways increased as compared with GL. Already under GL the Δflv1/Δflv3 double mutant demonstrated a partial down-regulation of transcripts for CCM and nitrogen metabolism, while in FL conditions the transcripts for nitrogen assimilation were strongly down-regulated. Many alterations were specific only for Δflv1/Δflv3, and not detected in Δflv1, suggesting that certain transcripts are affected primarily because of the lack of flv3 By constructing the strains overproducing solely either Flv1 or Flv3, we demonstrate that the homo-oligomers of these proteins also function in acclimation of cells to FL, by catalyzing reactions with as yet unidentified components, while the presence of both Flv1 and Flv3 is a prerequisite for the Mehler-like reaction and thus the electron transfer to O2 Considering the low expression of flv1, it is unlikely that the Flv1 homo-oligomer is present in the WT.
Collapse
Affiliation(s)
- Henna Mustila
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Pasi Paananen
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Natalia Battchikova
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Anita Santana-Sánchez
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Dorota Muth-Pawlak
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Martin Hagemann
- Institut Biowissenschaften, Pflanzenphysiologie, Universität Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
| | - Eva-Mari Aro
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Yagut Allahverdiyeva
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
20
|
Grouneva I, Muth-Pawlak D, Battchikova N, Aro EM. Changes in Relative Thylakoid Protein Abundance Induced by Fluctuating Light in the Diatom Thalassiosira pseudonana. J Proteome Res 2016; 15:1649-58. [PMID: 27025989 DOI: 10.1021/acs.jproteome.6b00124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
One of the hallmarks of marine diatom biology is their ability to cope with rapid changes in light availability due to mixing of the water column and the lens effect. We investigated how irradiance fluctuations influence the relative abundance of key photosynthetic proteins in the centric diatom Thalassiosira pseudonana by means of mass-spectrometry-based approaches for relative protein quantitation. Most notably, fluctuating-light conditions lead to a substantial overall up-regulation of light-harvesting complex proteins as well as several subunits of photosystems II and I. Despite an initial delay in growth under FL, there were no indications of FL-induced photosynthesis limitation, in contrast to other photosynthetic organisms. Our findings further strengthen the notion that diatoms use a qualitatively different mechanism of photosynthetic regulation in which chloroplast-mitochondria interaction has overtaken crucial regulatory processes of photosynthetic light reactions that are typical for the survival of land plants, green algae, and cyanobacteria.
Collapse
Affiliation(s)
- Irina Grouneva
- Department of Biochemistry, Molecular Plant Biology, University of Turku , Turku, FI-20520, Finland
| | - Dorota Muth-Pawlak
- Department of Biochemistry, Molecular Plant Biology, University of Turku , Turku, FI-20520, Finland
| | - Natalia Battchikova
- Department of Biochemistry, Molecular Plant Biology, University of Turku , Turku, FI-20520, Finland
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku , Turku, FI-20520, Finland
| |
Collapse
|