1
|
He R, Zuo Y, Li Q, Yan Q, Huang L. Cooperative mechanisms of LexA and HtpG in the regulation of virulence gene expression in Pseudomonas plecoglossicida. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100351. [PMID: 39980631 PMCID: PMC11840546 DOI: 10.1016/j.crmicr.2025.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
LexA is a well-known transcriptional repressor of DNA repair genes induced by DNA damage in Escherichia coli and other bacterial species. Recently, this paradigm-that LexA solely regulates the SOS response-has been challenged as studies reveal its involvement in various biological functions linked to virulence. Pseudomonas plecoglossicida, a major pathogen in mariculture, causes substantial economic losses annually in China. Our previous research suggested that LexA might collaboratively regulate virulence gene expression with HtpG during infection. This study aims to elucidate the molecular mechanism by which LexA controls virulence gene expression. We employed an array of methods including molecular dynamics simulations, molecular docking, ChIP-seq, RNA-seq, mass spectrometry, gene mutagenesis, LacZ reporter assays, electrophoretic mobility shift assays, co-immunoprecipitation, and in vitro LexA degradation experiments. Our findings identified 36 downstream virulence genes regulated by LexA, define three critical LexA binding motifs, and provide an in-depth analysis of LexA's recognition and binding to promoters, thereby regulating virulence gene expression. Additionally, we confirm the cooperative regulatory roles of HtpG, RecA, and LexA in virulence gene modulation. This is the first report of an endogenous accessory factor aiding in the binding of LexA to DNA. This study enhances our understanding of LexA's role in virulence regulation and offers a valuable theoretical and practical foundation for disease prevention and control.
Collapse
Affiliation(s)
- Rongchao He
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
| | - Yanfei Zuo
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
| | - Qiu Li
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
| | - Qingpi Yan
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
- State Key Laboratory of Mariculture Breeding, Fisheries college of Jimei university, Xiamen, Fujian, PR China
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, PR China
| | - Lixing Huang
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
- State Key Laboratory of Mariculture Breeding, Fisheries college of Jimei university, Xiamen, Fujian, PR China
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, PR China
| |
Collapse
|
2
|
Ding Y, Wen G, Wei X, Zhou H, Li C, Luo Z, Ou D, Yang J, Song X. Antibacterial activity and mechanism of luteolin isolated from Lophatherum gracile Brongn. against multidrug-resistant Escherichia coli. Front Pharmacol 2024; 15:1430564. [PMID: 38983919 PMCID: PMC11232434 DOI: 10.3389/fphar.2024.1430564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Infections caused by multidrug-resistant (MDR) bacteria have become a major challenge for global healthcare systems. The search for antibacterial compounds from plants has received increasing attention in the fight against MDR bacteria. As a medicinal and edible plant, Lophatherum gracile Brongn. (L. gracile) has favorable antibacterial effect. However, the main antibacterial active compound and its antimicrobial mechanism are not clear. Here, our study first identified the key active compound from L. gracile as luteolin. Meanwhile, the antibacterial effect of luteolin was detected by using the broth microdilution method and time-kill curve analysis. Luteolin can also cause morphological structure degeneration and content leakage, cell wall/membrane damage, ATP synthesis reduction, and downregulation of mRNA expression levels of sulfonamide and quinolones resistance genes in multidrug-resistant Escherichia coli (MDR E. coli). Furthermore, untargeted UPLC/Q-TOF-MS-based metabolomics analysis of the bacterial metabolites revealed that luteolin significantly changed riboflavin energy metabolism, bacterial chemotaxis cell process and glycerophospholipid metabolism of MDR E. coli. This study suggests that luteolin could be a potential new food additive or preservative for controlling MDR E. coli infection and spread.
Collapse
Affiliation(s)
- Yahao Ding
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Guilan Wen
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xingke Wei
- College of Animal Science, Guizhou University, Guiyang, China
| | - Hao Zhou
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chunjie Li
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Zhengqin Luo
- College of Animal Science, Guizhou University, Guiyang, China
| | - Deyuan Ou
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Jian Yang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xuqin Song
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Panteleev PV, Safronova VN, Kruglikov RN, Bolosov IA, Ovchinnikova TV. Genomic Insights into Bacterial Resistance to Proline-Rich Antimicrobial Peptide Bac7. MEMBRANES 2023; 13:438. [PMID: 37103865 PMCID: PMC10145973 DOI: 10.3390/membranes13040438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a modest toxicity toward mammalian cells attract much attention as new templates for the development of antibiotic drugs. However, a comprehensive understanding of mechanisms of bacterial resistance development to PrAMPs is necessary before their clinical application. In this study, development of the resistance to the proline-rich bovine cathelicidin Bac71-22 derivative was characterized in the multidrug-resistant Escherichia coli clinical isolate causing the urinary tract infection. Three Bac71-22-resistant strains with ≥16-fold increase in minimal inhibitory concentrations (MICs) were selected by serially passaging after four-week experimental evolution. It was shown that in salt-containing medium, the resistance was mediated by inactivation of the SbmA transporter. The absence of salt in the selection media affected both dynamics and main molecular targets under selective pressure: a point mutation leading to the amino acid substitution N159H in the WaaP kinase responsible for heptose I phosphorylation in the LPS structure was also found. This mutation led to a phenotype with a decreased susceptibility to both the Bac71-22 and polymyxin B. Screening of antimicrobial activities with the use of a wide panel of known AMPs, including the human cathelicidin LL-37 and conventional antibiotics, against selected strains indicated no significant cross-resistance effects.
Collapse
|
4
|
Bolosov IA, Panteleev PV, Balandin SV, Shamova OV, Ovchinnikova TV. Structural and Functional Characteristics of the Proline-Rich Antimicrobial Peptide Minibactenecin from Leukocytes of Domestic Goat Capra hircus. Bull Exp Biol Med 2023; 174:440-445. [PMID: 36892673 DOI: 10.1007/s10517-023-05725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 03/10/2023]
Abstract
We performed structural and functional studies of minibactenecin mini-ChBac7.5Nα, a natural proline-rich cathelicidin from domestic goat Capra hircus. To identify the key residues important for the biological action of the peptide, a panel of its alanine-substituted analogues was produced. The development of E. coli resistance to the natural minibactenecin, as well as to its analogues carrying substitutions for hydrophobic amino acids in the C-terminal residues was studied. The data obtained indicate the possibility of rapid development of the resistance to this class of peptides. The main factors in the formation of the antibiotic resistance are various mutations leading to inactivation of the SbmA transporter.
Collapse
Affiliation(s)
- I A Bolosov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - P V Panteleev
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - S V Balandin
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - O V Shamova
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - T V Ovchinnikova
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
5
|
Wang J, Chen N, Bian G, Mu X, Du N, Wang W, Ma C, Fu S, Huang B, Liu T, Yang Y, Yuan Q. Solar‐Driven Overproduction of Biofuels in Microorganisms. Angew Chem Int Ed Engl 2022; 61:e202207132. [DOI: 10.1002/anie.202207132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jie Wang
- College of Chemistry and Molecular Sciences Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) Ministry of Education School of Pharmaceutical Sciences Wuhan University Wuhan China
| | - Na Chen
- College of Chemistry and Molecular Sciences Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) Ministry of Education School of Pharmaceutical Sciences Wuhan University Wuhan China
| | - Guangkai Bian
- College of Chemistry and Molecular Sciences Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) Ministry of Education School of Pharmaceutical Sciences Wuhan University Wuhan China
| | - Xin Mu
- College of Chemistry and Molecular Sciences Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) Ministry of Education School of Pharmaceutical Sciences Wuhan University Wuhan China
| | - Na Du
- College of Chemistry and Molecular Sciences Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) Ministry of Education School of Pharmaceutical Sciences Wuhan University Wuhan China
| | - Wenjie Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Chong‐Geng Ma
- CQUPT-BUL Innovation Institute School of Optoelectronic Engineering Chongqing University of Posts and Telecommunications Chongqing China
| | - Shai Fu
- College of Chemistry and Molecular Sciences Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) Ministry of Education School of Pharmaceutical Sciences Wuhan University Wuhan China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong China
| | - Tiangang Liu
- College of Chemistry and Molecular Sciences Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) Ministry of Education School of Pharmaceutical Sciences Wuhan University Wuhan China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) Ministry of Education School of Pharmaceutical Sciences Wuhan University Wuhan China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) Ministry of Education School of Pharmaceutical Sciences Wuhan University Wuhan China
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha China
| |
Collapse
|
6
|
Goltermann L, Zhang M, Ebbensgaard AE, Fiodorovaite M, Yavari N, Løbner-Olesen A, Nielsen PE. Effects of LPS Composition in Escherichia coli on Antibacterial Activity and Bacterial Uptake of Antisense Peptide-PNA Conjugates. Front Microbiol 2022; 13:877377. [PMID: 35794919 PMCID: PMC9251361 DOI: 10.3389/fmicb.2022.877377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
The physical and chemical properties of the outer membrane of Gram-negative bacteria including Escherichia coli have a significant impact on the antibacterial activity and uptake of antibiotics, including antimicrobial peptides and antisense peptide-peptide nucleic acid (PNA) conjugates. Using a defined subset of E. coli lipopolysaccharide (LPS) and envelope mutants, components of the LPS-core, which provide differential susceptibility toward a panel of bacterial penetrating peptide (BPP)-PNA conjugates, were identified. Deleting the outer core of the LPS and perturbing the inner core only sensitized the bacteria toward (KFF)3K-PNA conjugates, but not toward conjugates carrying arginine-based BPPs. Interestingly, the chemical composition of the outer LPS core as such, rather than overall hydrophobicity or surface charge, appears to determine the susceptibility to different BPP-PNA conjugates thereby clearly demonstrating the complexity and specificity of the interaction with the LPS/outer membrane. Notably, mutants with outer membrane changes conferring polymyxin resistance did not show resistance toward the BPP-PNA conjugates, thereby eliminating one possible route of resistance for these molecules. Finally, envelope weakening, through deletion of membrane proteins such as OmpA as well as some proteins previously identified as involved in cationic antimicrobial peptide uptake, did not significantly influence BPP-PNA conjugate activity.
Collapse
Affiliation(s)
- Lise Goltermann
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Lise Goltermann
| | - Meiqin Zhang
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Marija Fiodorovaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anders Løbner-Olesen
- Section for Functional Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peter E. Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Peter E. Nielsen
| |
Collapse
|
7
|
Wang J, Chen N, Bian G, Mu X, Du N, Wang W, Ma CG, Fu S, Huang B, Liu T, Yang Y, Yuan Q. Solar‐driven Overproduction of Biofuels in Microorganisms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jie Wang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Na Chen
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Guangkai Bian
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xin Mu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Na Du
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Wenjie Wang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Chong-Geng Ma
- Chongqing University of Posts and Telecommunications School of Optoelectronic Engineering CHINA
| | - Shai Fu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Bolong Huang
- The Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology CHINA
| | - Tiangang Liu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Yanbing Yang
- Wuhan University College of Chemistry and Molecular Sciences Luojia Street 430072 Wuhan CHINA
| | - Quan Yuan
- Wuhan University College of Chemistry and Molecular Sciences Luojiashan Street 430072 Wuhan CHINA
| |
Collapse
|
8
|
Panteleev PV, Safronova VN, Kruglikov RN, Bolosov IA, Bogdanov IV, Ovchinnikova TV. A Novel Proline-Rich Cathelicidin from the Alpaca Vicugna pacos with Potency to Combat Antibiotic-Resistant Bacteria: Mechanism of Action and the Functional Role of the C-Terminal Region. MEMBRANES 2022; 12:membranes12050515. [PMID: 35629841 PMCID: PMC9146984 DOI: 10.3390/membranes12050515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023]
Abstract
Over recent years, a growing number of bacterial species have become resistant to clinically relevant antibiotics. Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a negligible toxicity toward mammalian cells attract attention as new templates for the development of antibiotic drugs. Here, we mined genomes of all living Camelidae species and found a novel family of Bac7-like proline-rich cathelicidins which inhibited bacterial protein synthesis. The N-terminal region of a novel peptide from the alpaca Vicugna pacos named VicBac is responsible for inhibition of bacterial protein synthesis with an IC50 value of 0.5 µM in the E. coli cell-free system whereas the C-terminal region allows the peptide to penetrate bacterial membranes effectively. We also found that the full-length VicBac did not induce bacterial resistance after a two-week selection experiment, unlike the N-terminal truncated analog, which depended on the SbmA transport system. Both pro- and anti-inflammatory action of VicBac and its N-terminal truncated variant on various human cell types was found by multiplex immunoassay. The presence of the C-terminal tail in the natural VicBac does not provide for specific immune-modulatory effects in vitro but enhances the observed impact compared with the truncated analog. The pronounced antibacterial activity of VicBac, along with its moderate adverse effects on mammalian cells, make this molecule a promising scaffold for the development of peptide antibiotics.
Collapse
|
9
|
Ludwig T, Krizsan A, Mohammed GK, Hoffmann R. Antimicrobial Activity and 70S Ribosome Binding of Apidaecin-Derived Api805 with Increased Bacterial Uptake Rate. Antibiotics (Basel) 2022; 11:antibiotics11040430. [PMID: 35453182 PMCID: PMC9025336 DOI: 10.3390/antibiotics11040430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
In view of the global spread of multiresistant bacteria and the occurrence of panresistant bacteria, there is an urgent need for antimicrobials with novel modes of action. A promising class is antimicrobial peptides (AMPs), including them proline-rich AMPs (PrAMPs), which target the 70S ribosome to inhibit protein translation. Here, we present a new designer peptide, Api805, combining the N- and C-terminal sequences of PrAMPs Api137 and drosocin, respectively. Api805 was similarly active against two Escherichia coli B strains but was inactive against E. coli K12 strain BW25113. These different activities could not be explained by the dissociation constants measured for 70S ribosome preparations from E. coli K12 and B strains. Mutations in the SbmA transporter that PrAMPs use to pass the inner membrane or proteolytic degradation of Api805 by lysate proteases could not explain this either. Interestingly, Api805 seems not to bind to the known binding sites of PrAMPs at the 70S ribosome and inhibited in vitro protein translation, independent of release factors, most likely using a “multimodal effect”. Interestingly, Api805 entered the E. coli B strain Rosetta faster and at larger quantities than the E. coli K-12 strain BW25113, which may be related to the different LPS core structure. In conclusion, slight structural changes in PrAMPs significantly altered their binding sites and mechanisms of action, allowing for the design of different antibiotic classes.
Collapse
Affiliation(s)
- Tobias Ludwig
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; (T.L.); (A.K.); (G.K.M.)
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Andor Krizsan
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; (T.L.); (A.K.); (G.K.M.)
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Gubran Khalil Mohammed
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; (T.L.); (A.K.); (G.K.M.)
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; (T.L.); (A.K.); (G.K.M.)
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
- Correspondence:
| |
Collapse
|
10
|
Kolano L, Knappe D, Berg A, Berg T, Hoffmann R. Effect of amino acid substitutions on 70S ribosomal binding, cellular uptake, and antimicrobial activity of oncocin Onc112. Chembiochem 2021; 23:e202100609. [PMID: 34902208 PMCID: PMC9306569 DOI: 10.1002/cbic.202100609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/06/2022]
Abstract
Proline‐rich antimicrobial peptides (PrAMPs) are promising candidates for the treatment of infections caused by high‐priority human pathogens. Their mode of action consists of (I) passive diffusion across the outer membrane, (II) active transport through the inner membrane, and (III) inhibition of protein biosynthesis by blocking the exit tunnel of the 70S ribosome. We tested whether in vitro data on ribosomal binding and bacterial uptake could predict the antibacterial activity of PrAMPs against Gram‐negative and Gram‐positive bacteria. Ribosomal binding and bacterial uptake rates were measured for 47 derivatives of PrAMP Onc112 and compared to the minimal inhibitory concentrations (MIC) of each peptide. Ribosomal binding was evaluated for ribosome extracts from four Gram‐negative bacteria. Bacterial uptake was assessed by quantifying each peptide in the supernatants of bacterial cultures. Oncocin analogues with a higher net positive charge appeared to be more active, although their ribosome binding and uptake rates were not necessarily better than for Onc112. The data suggest a complex mode of action influenced by further factors improving or reducing the antibacterial activity, including diffusion through membranes, transport mechanism, secondary targets, off‐target binding, intracellular distribution, and membrane effects. Relying only on in vitro binding and uptake data may not be sufficient for the rational development of more active analogues.
Collapse
Affiliation(s)
- Lisa Kolano
- Universität Leipzig Fakultät für Chemie und Mineralogie: Universitat Leipzig Fakultat fur Chemie und Mineralogie, Chemie und Mineralogie, GERMANY
| | - Daniel Knappe
- Universität Leipzig Fakultät für Chemie und Mineralogie: Universitat Leipzig Fakultat fur Chemie und Mineralogie, Chemie und Mineralogie, GERMANY
| | - Angela Berg
- Universität Leipzig Fakultät für Chemie und Mineralogie: Universitat Leipzig Fakultat fur Chemie und Mineralogie, Chemie und Mineralogie, GERMANY
| | - Thorsten Berg
- Universität Leipzig Fakultät für Chemie und Mineralogie: Universitat Leipzig Fakultat fur Chemie und Mineralogie, Chemie und Mineralogie, GERMANY
| | - Ralf Hoffmann
- Institut für Bioanalytische Chemie, Biotechnologisch-Biomedizinisches Zentrum, Deutscher Platz 5, 04103, Leipzig, GERMANY
| |
Collapse
|
11
|
Panteleev PV, Bolosov IA, Kalashnikov AÀ, Kokryakov VN, Shamova OV, Emelianova AA, Balandin SV, Ovchinnikova TV. Combined Antibacterial Effects of Goat Cathelicidins With Different Mechanisms of Action. Front Microbiol 2018; 9:2983. [PMID: 30555455 PMCID: PMC6284057 DOI: 10.3389/fmicb.2018.02983] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
Being essential components of innate immune system, animal antimicrobial peptides (AMPs) also known as host-defense peptides came into sharp focus as possible alternatives to conventional antibiotics due to their high efficacy against a broad range of MDR pathogens and low rate of resistance development. Mammalian species can produce a set of co-localized AMPs with different structures and mechanisms of actions. Here we examined the combined antibacterial effects of cathelicidins, structurally diverse family of host-defense peptides found in vertebrate species. As a model we have used structurally distinct cathelicidins expressed in the leukocytes of goat Capra hircus. The recombinant analogs of natural peptides were obtained by heterologous expression in bacterial system and biological activities as well as the major mechanisms of antibacterial action of the peptides were investigated. As the result, the marked synergistic effect against wide panel of bacterial strains including extensively drug-resistant ones was observed for the pair of membranolytic α-helical amphipathic peptide ChMAP-28 and Pro-rich peptide mini-ChBac7.5Nα targeting a bacterial ribosome. ChMAP-28 was shown to damage the outer bacterial membrane at sub-inhibitory concentrations that could facilitate Pro-rich peptide translocation into the cell. Finally, resistance changes under a long-term continuous selective pressure of each individual peptide and the synergistic combination of both peptides were tested against Escherichia coli strains. The combination was shown to keep a high activity after the 26-days selection experiment in contrast to mini-ChBac7.5Nα used alone and the reference antibiotic polymyxin B. We identified the point mutation leading to amino acid substitution V102E in the membrane transport protein SbmA of the mini-ChBac7.5Nα-resistant strain obtained by selection. The experiments revealed that the presence of sub-inhibitory concentrations of ChMAP-28 restored the activity of mini-ChBac7.5Nα against this strain and clinical isolate with a weak sensitivity to mini-ChBac7.5Nα. The obtained results suggest a potential medical application of synergistic combinations of natural cathelicidins, which allows using a lower therapeutic dose and minimizes the risk of resistance development.
Collapse
Affiliation(s)
- Pavel V Panteleev
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ilia A Bolosov
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander À Kalashnikov
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Olga V Shamova
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Anna A Emelianova
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Balandin
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V Ovchinnikova
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Rani A, Babu S. Environmental proteomic studies: closer step to understand bacterial biofilms. World J Microbiol Biotechnol 2018; 34:120. [PMID: 30022302 DOI: 10.1007/s11274-018-2504-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023]
Abstract
Advancement in proteome analytical techniques and the development of protein databases have been helping to understand the physiology and subtle molecular mechanisms behind biofilm formation in bacteria. This review is to highlight how the evolving proteomic approaches have revealed fundamental molecular processes underlying the formation and regulation of bacterial biofilms. Based on the survey of research reports available on differential expression of proteins in biofilms of bacterial from wide range of environments, four important cellular processes viz. metabolism, motility, transport and stress response that contribute to formation of bacterial biofilms are discussed. This review might answer how proteins related to these cellular processes contribute significantly in stabilizing biofilms of different bacteria in diverse environmental conditions.
Collapse
Affiliation(s)
- Anupama Rani
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Subramanian Babu
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
13
|
Phospholipid composition of the outer membrane of Escherichia coli influences its susceptibility against antimicrobial peptide apidaecin 1b. Diagn Microbiol Infect Dis 2018; 90:316-323. [DOI: 10.1016/j.diagmicrobio.2017.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/08/2017] [Accepted: 11/11/2017] [Indexed: 12/30/2022]
|
14
|
Matsumoto K, Yamazaki K, Kawakami S, Miyoshi D, Ooi T, Hashimoto S, Taguchi S. In vivo target exploration of apidaecin based on Acquired Resistance induced by Gene Overexpression (ARGO assay). Sci Rep 2017; 7:12136. [PMID: 28939819 PMCID: PMC5610309 DOI: 10.1038/s41598-017-12039-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/01/2017] [Indexed: 01/05/2023] Open
Abstract
Identifying the target molecules of antimicrobial agents is essential for assessing their mode of action. Here, we propose Acquired Resistance induced by Gene Overexpression (ARGO) as a novel in vivo approach for exploring target proteins of antimicrobial agents. The principle of the method is based on the fact that overexpression of the expected target protein leads to reduced sensitivity to the antimicrobial agent. We applied this approach to identify target proteins of the antimicrobial peptide apidaecin, which is specifically effective against Gram-negative bacteria. To this end, a set of overexpression Escherichia coli clones was tested, and peptide chain release factor 1, which directs the termination of translation, was found as a candidate, suggesting that apidaecin inhibits the termination step of translation. This finding was confirmed in vivo and in vitro by evaluating the inhibitory activity of apidaecin towards lacZ reporter gene expression, which is tightly dependent on its stop codon. The results of this study demonstrate that apidaecin exerts its antimicrobial effects partly by inhibiting release factors.
Collapse
Affiliation(s)
- Ken'ichiro Matsumoto
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, 060-8628, Japan.
| | - Kurato Yamazaki
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, 060-8628, Japan
| | - Shun Kawakami
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, 060-8628, Japan
| | - Daichi Miyoshi
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, 060-8628, Japan
| | - Toshihiko Ooi
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, 060-8628, Japan
| | - Shigeki Hashimoto
- Faculty of Industrial Science and Technology, Tokyo University of Science, 102-1 Tomino, Oshamanbe-cho, Yamakoshi-gun, 049-3514, Japan
| | - Seiichi Taguchi
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, 060-8628, Japan.
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
| |
Collapse
|
15
|
Correlating uptake and activity of proline-rich antimicrobial peptides in Escherichia coli. Anal Bioanal Chem 2017; 409:5581-5592. [PMID: 28717895 DOI: 10.1007/s00216-017-0496-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/29/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023]
Abstract
Increasing death tolls accounted for by antimicrobial drug resistance demand novel antibiotic lead compounds. Among different promising candidate classes, proline-rich antimicrobial peptides (PrAMPs) are very favorable due to their intracellular mechanism, i.e., binding to the 70S ribosome and DnaK, after active uptake relying on bacterial transporters like SbmA and MdtM. Studies on peptide internalization as the first step of their complex mode of action rely typically on fluorophore or radioactive labeling and quantification using microscopy, flow cytometry, or radioactivity. Here, a liquid chromatography based assay was applied to quantify the unlabeled internalized full-length peptides and their proteolytic degradation products (metabolites) using UV absorbance and mass spectrometry. Knockout mutants lacking transporter proteins showed reduced PrAMP uptakes, explaining their reduced susceptibility against PrAMPs. Interestingly, major metabolites produced by bacterial proteases still bound to the 70S ribosome provide evidence that degradation by cytosolic proteases as a possible resistance mechanism is not very efficient. Graphical abstract The uptake of unlabeled proline-rich antimicrobial peptides (PrAMPs) is analyzed in Escherichia coli BW25113 wild-type and transporter knockout mutants ΔsbmA and BS2 (ΔsbmA yjiL::Tn10) by reversed-phase chromatography and quantified by UV detection or mass spectrometry with multi-reaction monitoring (scheme right). Internalized peptide amounts correlated to minimal inhibitory concentrations and bacterial transport activities based on the present transporter proteins (scheme left).
Collapse
|