1
|
Wei W, Wang LF, Tao JJ, Zhang WK, Chen SY, Song Q, Zhang JS. The comprehensive regulatory network in seed oil biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:649-668. [PMID: 39821491 DOI: 10.1111/jipb.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
Plant oils play a crucial role in human nutrition, industrial applications and biofuel production. While the enzymes involved in fatty acid (FA) biosynthesis are well-studied, the regulatory networks governing these processes remain largely unexplored. This review explores the intricate regulatory networks modulating seed oil biosynthesis, focusing on key pathways and factors. Seed oil content is determined by the efficiency of de novo FA synthesis as well as influenced by sugar transport, lipid metabolism, FA synthesis inhibitors and fine-tuning mechanisms. At the center of this regulatory network is WRINKLED1 (WRI1), which plays a conserved role in promoting seed oil content across various plant species. WRI1 interacts with multiple proteins, and its expression level is regulated by upstream regulators, including members of the LAFL network. Beyond the LAFL network, we also discuss a potential nuclear factor-Y (NF-Y) regulatory network in soybean with an emphasis on NF-YA and NF-YB and their associated proteins. This NF-Y network represents a promising avenue for future efforts aimed at enhancing oil accumulation and improving stress tolerance in soybean. Additionally, the application of omics-based approaches is of great significance. Advances in omics technologies have greatly facilitated the identification of gene resources, opening new opportunities for genetic improvement. Importantly, several transcription factors involved in oil biosynthesis also participate in stress responses, highlighting a potential link between the two processes. This comprehensive review elucidates the complex mechanisms underlying the regulation of oil biosynthesis, offering insights into potential biotechnological strategies for improving oil production and stress tolerance in oil crops.
Collapse
Affiliation(s)
- Wei Wei
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long-Fei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Jian-Jun Tao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Jin-Song Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Guo H, Li J, Liu Y, Fernández-Pascual E. Lipid metabolism during seed germination of Pistacia chinensis and its response to gibberellic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109371. [PMID: 39667083 DOI: 10.1016/j.plaphy.2024.109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Lipid metabolism may play a critical role in fueling seed germination, but the knowledge of lipid metabolism during germination is still ambiguous. Here, we hypothesize that gibberellic acid (GA) promotes germination by means of enhancing lipid mobilization in Chinese pistachio (Pistacia chinensis Bunge), a species belonging to Anacardiaceae with high oil content in its seeds. A multi-omics approach has been applied to measure lipid mobilization during seed germination, and to identify the key regulators involved in GA-mediated lipid metabolism. The results indicated that GA contents increased, while IAA, ABA and JA contents decreased during seed germination. GA3 increased significantly in the two germination stages (i.e. imbibition and radicle protrusion), and it was more abundant than GA1 and GA4. In addition, the relative content of most lipids decreased during germination, and the differentially changed metabolites were significantly enriched in lipid metabolic pathways based on KEGG analysis. WGCNA indicated that GA3 was correlated with more genes in lipid metabolic pathways. Transcriptomic analysis further revealed that differentially expressed genes (DEGs) related to fatty acid biosynthesis, glycerolipid metabolism, glycerophospholipid metabolism and starch and sucrose metabolism were upregulated under GA3 application, such as the acetyl-CoA carboxylase biotin carboxyl carrier protein (ACCB), fatty acyl-ACP thioesterase B (FATB), diacylglycerol acyltransferase (DGAT) and DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1). Therefore, our study supports the hypothesis that GA promotes seed germination in P. chinensis by enhancing lipid mobilization. This study proposes a novel mechanism of lipid responses to exogenous GA, which contributes to a deep understanding of germination of oleaginous seeds.
Collapse
Affiliation(s)
- Huanhuan Guo
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Jinjin Li
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Yong Liu
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China.
| | - Eduardo Fernández-Pascual
- Biodiversity Research Institute (IMIB), University of Oviedo - CSIC - Principality of Asturias, E-33600, Mieres, Spain
| |
Collapse
|
3
|
Wang Z, Lei Y, Liao B. Omics-driven advances in the understanding of regulatory landscape of peanut seed development. FRONTIERS IN PLANT SCIENCE 2024; 15:1393438. [PMID: 38766472 PMCID: PMC11099219 DOI: 10.3389/fpls.2024.1393438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Peanuts (Arachis hypogaea) are an essential oilseed crop known for their unique developmental process, characterized by aerial flowering followed by subterranean fruit development. This crop is polyploid, consisting of A and B subgenomes, which complicates its genetic analysis. The advent and progression of omics technologies-encompassing genomics, transcriptomics, proteomics, epigenomics, and metabolomics-have significantly advanced our understanding of peanut biology, particularly in the context of seed development and the regulation of seed-associated traits. Following the completion of the peanut reference genome, research has utilized omics data to elucidate the quantitative trait loci (QTL) associated with seed weight, oil content, protein content, fatty acid composition, sucrose content, and seed coat color as well as the regulatory mechanisms governing seed development. This review aims to summarize the advancements in peanut seed development regulation and trait analysis based on reference genome-guided omics studies. It provides an overview of the significant progress made in understanding the molecular basis of peanut seed development, offering insights into the complex genetic and epigenetic mechanisms that influence key agronomic traits. These studies highlight the significance of omics data in profoundly elucidating the regulatory mechanisms of peanut seed development. Furthermore, they lay a foundational basis for future research on trait-related functional genes, highlighting the pivotal role of comprehensive genomic analysis in advancing our understanding of plant biology.
Collapse
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| |
Collapse
|
4
|
Cherry A, Fisher B, Branch W, Peralta C, Gilliam L, Pahom O, Liebold C, Marshall J. Proteomic Analysis of Arachis hypogaea Seeds from Different Maturity Classes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1111. [PMID: 38674520 PMCID: PMC11054812 DOI: 10.3390/plants13081111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Physiological maturity impacts seed quality through various mechanisms including vigor, desiccation tolerance, dormancy induction, synthesis of raw materials (including seed storage proteins), and the reorganization of metabolisms. Peanut seed development can be classified into seven classes with four incremental stages per class. Based on the mesocarp color, the final three stages are commonly referred to as "orange", "brown", and "black". In 2017, freshly harvested pods from one genotype of runner market-type peanuts grown under conventional practices were obtained from the University of Georgia research facility. The pods were removed from the plant material and 'pod blasted' to reveal the mesocarp. After separation, the remainder of the pod outer layer was removed, and the seeds were segregated for proteomic analysis. The raw peanuts were analyzed by bottom-up LC-MS/MS proteomics, which was conducted by the Proteomics Resource Center at the Rockefeller University, to identify the significant protein composition differences in each maturity class. The proteomic data revealed differentially expressed proteins as a function of maturity class with multiple functions including plant defense, metabolism, cell signaling, nutrient accumulation, and packaging. Understanding the processes needed for seed maturation will enable peanut scientists to evaluate the traits needed for robust germination, hardiness of the seed in response to disease, and nutrient quality.
Collapse
Affiliation(s)
- Ashley Cherry
- Department of Mathematics, Lubbock Christian University, Lubbock, TX 79407, USA; (A.C.); (B.F.)
| | - Brian Fisher
- Department of Mathematics, Lubbock Christian University, Lubbock, TX 79407, USA; (A.C.); (B.F.)
| | - William Branch
- Institute of Plant Breeding, Genetics, and Genomics, Tifton Campus, The University of Georgia, Crop and Soil Sciences, Tifton, GA 31793, USA;
| | - Christopher Peralta
- The Proteomics Resource Center, Rockefeller University, New York, NY 10065, USA;
| | - Lissa Gilliam
- Biochemistry Research Laboratory, Lubbock Christian University, Lubbock, TX 79407, USA;
| | - Olga Pahom
- Honors College, Lubbock Christian University, Lubbock, TX 79407, USA;
| | | | - Julie Marshall
- Department of Chemistry and Biochemistry, Lubbock Christian University, Lubbock, TX 79407, USA
| |
Collapse
|
5
|
Cao D, Ma Y, Cao Z, Hu S, Li Z, Li Y, Wang K, Wang X, Wang J, Zhao K, Zhao K, Qiu D, Li Z, Ren R, Ma X, Zhang X, Gong F, Jung MY, Yin D. Coordinated Lipid Mobilization during Seed Development and Germination in Peanut ( Arachis hypogaea L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3218-3230. [PMID: 38157443 PMCID: PMC10870768 DOI: 10.1021/acs.jafc.3c06697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Peanut (Arachis hypogaea L.) is one of the most important oil crops in the world due to its lipid-rich seeds. Lipid accumulation and degradation play crucial roles in peanut seed maturation and seedling establishment, respectively. Here, we utilized lipidomics and transcriptomics to comprehensively identify lipids and the associated functional genes that are important in the development and germination processes of a large-seed peanut variety. A total of 332 lipids were identified; triacylglycerols (TAGs) and diacylglycerols were the most abundant during seed maturation, constituting 70.43 and 16.11%, respectively, of the total lipids. Significant alterations in lipid profiles were observed throughout seed maturation and germination. Notably, TAG (18:1/18:1/18:2) and (18:1/18:2/18:2) peaked at 23386.63 and 23392.43 nmol/g, respectively, at the final stage of seed development. Levels of hydroxylated TAGs (HO-TAGs) increased significantly during the initial stage of germination. Accumulation patterns revealed an inverse relationship between free fatty acids and TAGs. Lipid degradation was determined to be regulated by diacylglycerol acyltransferase, triacylglycerol lipase, and associated transcription factors, predominantly yielding oleic acid, linoleic acid, and linolenic acid. Collectively, the results of this study provide valuable insights into lipid dynamics during the development and germination of large-seed peanuts, gene resources, and guiding future research into lipid accumulation in an economically important crop.
Collapse
Affiliation(s)
- Di Cao
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Yongzhe Ma
- College
of Food Science, Woosuk University, Samrea-Up, Wanju-Kun, Jeonbuk Province 55338, Republic of Korea
| | - Zenghui Cao
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Sasa Hu
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Zhan Li
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Yanzhe Li
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Kuopeng Wang
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Xiaoxuan Wang
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Jinzhi Wang
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Kunkun Zhao
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Kai Zhao
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Ding Qiu
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Zhongfeng Li
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Rui Ren
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Xingli Ma
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Xingguo Zhang
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Fangping Gong
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Mun Yhung Jung
- College
of Food Science, Woosuk University, Samrea-Up, Wanju-Kun, Jeonbuk Province 55338, Republic of Korea
| | - Dongmei Yin
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| |
Collapse
|
6
|
Li H, Che R, Zhu J, Yang X, Li J, Fernie AR, Yan J. Multi-omics-driven advances in the understanding of triacylglycerol biosynthesis in oil seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:999-1017. [PMID: 38009661 DOI: 10.1111/tpj.16545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Vegetable oils are rich sources of polyunsaturated fatty acids and energy as well as valuable sources of human food, animal feed, and bioenergy. Triacylglycerols, which are comprised of three fatty acids attached to a glycerol backbone, are the main component of vegetable oils. Here, we review the development and application of multiple-level omics in major oilseeds and emphasize the progress in the analysis of the biological roles of key genes underlying seed oil content and quality in major oilseeds. Finally, we discuss future research directions in functional genomics research based on current omics and oil metabolic engineering strategies that aim to enhance seed oil content and quality, and specific fatty acids components according to either human health needs or industrial requirements.
Collapse
Affiliation(s)
- Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Ronghui Che
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jiantang Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jiansheng Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Wang M, Zhu L, Zhang C, Zhou H, Tang Y, Cao S, Chen J, Zhang J. Transcriptomic-Proteomic Analysis Revealed the Regulatory Mechanism of Peanut in Response to Fusarium oxysporum. Int J Mol Sci 2024; 25:619. [PMID: 38203792 PMCID: PMC10779420 DOI: 10.3390/ijms25010619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Peanut Fusarium rot, which is widely observed in the main peanut-producing areas in China, has become a significant factor that has limited the yield and quality in recent years. It is highly urgent and significant to clarify the regulatory mechanism of peanuts in response to Fusarium oxysporum. In this study, transcriptome and proteome profiling were combined to provide new insights into the molecular mechanisms of peanut stems after F. oxysporums infection. A total of 3746 differentially expressed genes (DEGs) and 305 differentially expressed proteins (DEPs) were screened. The upregulated DEGs and DEPs were primarily enriched in flavonoid biosynthesis, circadian rhythm-plant, and plant-pathogen interaction pathways. Then, qRT-PCR analysis revealed that the expression levels of phenylalanine ammonia-lyase (PAL), chalcone isomerase (CHI), and cinnamic acid-4-hydroxylase (C4H) genes increased after F. oxysporums infection. Moreover, the expressions of these genes varied in different peanut tissues. All the results revealed that many metabolic pathways in peanut were activated by improving key gene expressions and the contents of key enzymes, which play critical roles in preventing fungi infection. Importantly, this research provides the foundation of biological and chemical analysis for peanut disease resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiancheng Zhang
- Shandong Peanut Research Institute, Qingdao 266100, China; (M.W.); (L.Z.); (C.Z.); (H.Z.); (Y.T.); (S.C.); (J.C.)
| |
Collapse
|
8
|
Wang Y, Liu D, Yin H, Wang H, Cao C, Wang J, Zheng J, Liu J. Transcriptomic and Metabolomic Analyses of the Response of Resistant Peanut Seeds to Aspergillus flavus Infection. Toxins (Basel) 2023; 15:414. [PMID: 37505683 PMCID: PMC10467056 DOI: 10.3390/toxins15070414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
Peanut seeds are susceptible to Aspergillus flavus infection, which has a severe impact on the peanut industry and human health. However, the molecular mechanism underlying this defense remains poorly understood. The aim of this study was to analyze the changes in differentially expressed genes (DEGs) and differential metabolites during A. flavus infection between Zhonghua 6 and Yuanza 9102 by transcriptomic and metabolomic analysis. A total of 5768 DEGs were detected in the transcriptomic study. Further functional analysis showed that some DEGs were significantly enriched in pectinase catabolism, hydrogen peroxide decomposition and cell wall tissues of resistant varieties at the early stage of infection, while these genes were differentially enriched in the middle and late stages of infection in the nonresponsive variety Yuanza 9102. Some DEGs, such as those encoding transcription factors, disease course-related proteins, peroxidase (POD), chitinase and phenylalanine ammonialyase (PAL), were highly expressed in the infection stage. Metabolomic analysis yielded 349 differential metabolites. Resveratrol, cinnamic acid, coumaric acid, ferulic acid in phenylalanine metabolism and 13S-HPODE in the linolenic acid metabolism pathway play major and active roles in peanut resistance to A. flavus. Combined analysis of the differential metabolites and DEGs showed that they were mainly enriched in phenylpropane metabolism and the linolenic acid metabolism pathway. Transcriptomic and metabolomic analyses further confirmed that peanuts infected with A. flavus activates various defense mechanisms, and the response to A. flavus is more rapid in resistant materials. These results can be used to further elucidate the molecular mechanism of peanut resistance to A. flavus infection and provide directions for early detection of infection and for breeding peanut varieties resistant to aflatoxin contamination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jihong Liu
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.W.); (D.L.); (H.Y.); (H.W.); (C.C.); (J.W.); (J.Z.)
| |
Collapse
|
9
|
Gangurde SS, Pasupuleti J, Parmar S, Variath MT, Bomireddy D, Manohar SS, Varshney RK, Singam P, Guo B, Pandey MK. Genetic mapping identifies genomic regions and candidate genes for seed weight and shelling percentage in groundnut. Front Genet 2023; 14:1128182. [PMID: 37007937 PMCID: PMC10061104 DOI: 10.3389/fgene.2023.1128182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Seed size is not only a yield-related trait but also an important measure to determine the commercial value of groundnut in the international market. For instance, small size is preferred in oil production, whereas large-sized seeds are preferred in confectioneries. In order to identify the genomic regions associated with 100-seed weight (HSW) and shelling percentage (SHP), the recombinant inbred line (RIL) population (Chico × ICGV 02251) of 352 individuals was phenotyped for three seasons and genotyped with an Axiom_Arachis array containing 58K SNPs. A genetic map with 4199 SNP loci was constructed, spanning a map distance of 2708.36 cM. QTL analysis identified six QTLs for SHP, with three consistent QTLs on chromosomes A05, A08, and B10. Similarly, for HSW, seven QTLs located on chromosomes A01, A02, A04, A10, B05, B06, and B09 were identified. BIG SEED locus and spermidine synthase candidate genes associated with seed weight were identified in the QTL region on chromosome B09. Laccase, fibre protein, lipid transfer protein, senescence-associated protein, and disease-resistant NBS-LRR proteins were identified in the QTL regions associated with shelling percentage. The associated markers for major-effect QTLs for both traits successfully distinguished between the small- and large-seeded RILs. QTLs identified for HSW and SHP can be used for developing potential selectable markers to improve the cultivars with desired seed size and shelling percentage to meet the demands of confectionery industries.
Collapse
Affiliation(s)
- Sunil S. Gangurde
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
- USDA-ARS, Crops Genetics and Breeding Research Unit, Tifton, GA, United States
| | - Janila Pasupuleti
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sejal Parmar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Murali T. Variath
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Deekshitha Bomireddy
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Surendra S. Manohar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Baozhu Guo
- USDA-ARS, Crops Genetics and Breeding Research Unit, Tifton, GA, United States
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
- *Correspondence: Manish K. Pandey,
| |
Collapse
|
10
|
Jin F, Zhou Y, Zhang P, Huang R, Fan W, Li B, Li G, Song X, Pei D. Identification of Key Lipogenesis Stages and Proteins Involved in Walnut Kernel Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4306-4318. [PMID: 36854654 DOI: 10.1021/acs.jafc.2c08680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Walnuts are abundant in oil content, especially for polyunsaturated fatty acids, but the understanding of their formation is limited. We collected walnut (Juglans regia L.) kernels at 60, 74, 88, 102, 116, 130, and 144 days after pollination (designated S1-S7). The ultrastructure and accumulation of oil bodies (OBs) were observed using transmission electron microscopy (TEM), and the oil content, fatty acid composition, and proteomic changes in walnut kernels were determined. The oil content and OB accumulation increased during the development and rose sharply from S1 to S3 stages, which are considered the key lipogenesis stage. A total of 5442 proteins were identified and determined as differentially expressed proteins (DEPs) using label-free proteomic analysis. Fatty acid desaturases (FAD) 2, FAD3, oleosin, and caleosin were essential and upregulated from the S1 to S3 stages. Furthermore, the highly expressed oleosin gene JrOLE14.7 from walnuts was cloned and overexpressed in transgenic Brassica napus. The overexpression of JrOLE14.7 increased the oil content, diameter, hundred weight of seeds and changed the fatty acid composition and OB size of Brassica napus seeds. These findings provide insights into the molecular mechanism of oil biosynthesis and the basis for the genetic improvement of walnuts.
Collapse
Affiliation(s)
- Feng Jin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ye Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Pu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ruimin Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wei Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Baoxin Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Guangzhu Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaobo Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
11
|
Wang X, Zhong L, Zou X, Gong L, Zhuang J, Zhang D, Zheng H, Wang X, Wu D, Zhan R, Chen L. GC-MS and UHPLC-QTOFMS-assisted identification of the differential metabolites and metabolic pathways in key tissues of Pogostemon cablin. FRONTIERS IN PLANT SCIENCE 2023; 14:1098280. [PMID: 36923120 PMCID: PMC10009150 DOI: 10.3389/fpls.2023.1098280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Pogostemon cablin is an important aromatic medicinal herb widely used in the pharmaceutical and perfume industries. However, our understanding of the phytochemical compounds and metabolites within P. cablin remains limited. To our knowledge, no integrated studies have hitherto been conducted on the metabolites of the aerial parts of P. cablin. In this study, twenty-three volatile compounds from the aerial parts of P. cablin were identified by GC-MS, predominantly sesquiterpenes. Quantitative analysis showed the highest level of patchouli alcohol in leaves (24.89 mg/g), which was 9.12 and 6.69-fold higher than in stems and flowers. UHPLC-QTOFMS was used to analyze the non-volatile compounds of leaf, stem and flower tissues. The differences in metabolites between flower and leaf tissues were the largest. Based on 112, 77 and 83 differential metabolites between flower-leaf, flower-stem and leaf-stem, three tissue-specific biomarkers of metabolites were identified, and the differential metabolites were enriched in several KEGG pathways. Furthermore, labeling differential metabolites in the primary and secondary metabolic pathways showed that flowers accumulated more lipids and amino acids, including proline, lysine and tryptophan; the leaves accumulated higher levels of terpenoids, vitamins and flavonoids, and stems contained higher levels of carbohydrate compounds. Based on the role of acetyl coenzyme A, the distribution and possible exchange mechanism of metabolites in leaves, stems and flowers of P. cablin were mapped for the first time, laying the groundwork for future research on the metabolites in P. cablin and their regulatory role.
Collapse
Affiliation(s)
- Xiaobing Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Liting Zhong
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Xuan Zou
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Lizhen Gong
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Jiexuan Zhuang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Danhua Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Hai Zheng
- School of Pharmaceutical Sciences, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Xiaomin Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Daidi Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| | - Likai Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| |
Collapse
|
12
|
Xiao Y, Liu H, Lu Q, Li H, Liu Q, Li S, Liu H, Varshney RK, Liang X, Hong Y, Chen X. Lipid profile variations in high olecic acid peanuts by following different cooking processes. Food Res Int 2022; 155:110993. [DOI: 10.1016/j.foodres.2022.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/29/2021] [Accepted: 01/11/2022] [Indexed: 11/15/2022]
|
13
|
Zhang B, Li B, Men XH, Xu ZW, Wu H, Qin XT, Xu F, Teng Y, Yuan SJ, Jin LQ, Liu ZQ, Zheng YG. Proteome sequencing and analysis of Ophiocordyceps sinensis at different culture periods. BMC Genomics 2020; 21:886. [PMID: 33308160 PMCID: PMC7731760 DOI: 10.1186/s12864-020-07298-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/02/2020] [Indexed: 01/04/2023] Open
Abstract
Background Ophiocordyceps sinensis is an important traditional Chinese medicine for its comprehensive active ingredients, such as cordycepin, cordycepic acid, and Cordyceps polysaccharide. O. sinensis zjut, a special strain isolated from O. sinensis, has similar pharmacological functions to wild O. sinensis. Currently, O. sinensis with artificial cultivation has been widely studied, but systematic fundamental research at protein levels has not been determined. Results Proteomes of O. sinensis zjut at different culture periods (growth period, 3rd day; pre-stable period, 6th day; and stable period, 9th day) were relatively quantified by relative isotope markers and absolute quantitative technology. In total, 4005 proteins were obtained and further annotated with Gene Ontology, Kyoto Encyclopedia of Genes and Genomes database. Based on the result of the annotations, metabolic pathways of active ingredients, amino acids and fatty acid were constructed, and the related enzymes were exhibited. Subsequently, comparative proteomics of O. sinensis zjut identified the differentially expressed proteins (DEPs) by growth in different culture periods, to find the important proteins involved in metabolic pathways of active ingredients. 605 DEPs between 6d-VS-3d, 1188 DEPs between 9d-VS-3d, and 428 DEPs between 9d-VS-6d were obtained, respectively. Conclusion This work provided scientific basis to study protein profile and comparison of protein expression levels of O. sinensis zjut, and it will be helpful for metabolic engineering works to active ingredients for exploration, application and improvement of this fungus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07298-z.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bo Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiao-Hui Men
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhe-Wen Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Wu
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Xiang-Tian Qin
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Feng Xu
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Yi Teng
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Shui-Jin Yuan
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
14
|
Muralidharan S, Poon YY, Wright GC, Haynes PA, Lee NA. Quantitative proteomics analysis of high and low polyphenol expressing recombinant inbred lines (RILs) of peanut (Arachis hypogaea L.). Food Chem 2020; 334:127517. [PMID: 32711266 DOI: 10.1016/j.foodchem.2020.127517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 11/28/2022]
Abstract
To facilitate selective breeding of polyphenol-rich peanuts, we looked for mass spectrometry-based proteomic evidence, investigating a subset of recombinant inbred lines (RILs) developed by the Australian peanut breeding program. To do this, we used label-free shotgun proteomics for protein and peptide quantitation, statistically analyzed normalized spectral abundance factors using R-package, as well as assayed important antioxidants. Results revealed statistically significant protein expression changes in 82 proteins classified between high or low polyphenols expressing RILs. Metabolic changes in polyphenol-rich RIL p27-362 point towards increased enzymatic breakdown of sugars and phenylalanine biosynthesis. The study revealed phenylpropanoid pathway overexpression resulting in increased polyphenols biosynthesis. Overexpression of antioxidant enzymes such as catalase, by 73.4 fold was also observed. A strong metabolic correlation exists with the observed phenotypic traits. Peanut RIL p27-362 presents a superior nutritional composition with antioxidant-rich peanut phenotype and could yield commercial profits. Data are available via ProteomeXchange with identifierPXD015493.
Collapse
Affiliation(s)
- Sridevi Muralidharan
- ARC Training Centre for Advanced Technologies in Food Manufacture, School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Yan Yee Poon
- ARC Training Centre for Advanced Technologies in Food Manufacture, School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Graeme C Wright
- Peanut Company of Australia, Kingaroy, Queensland, Australia
| | - Paul A Haynes
- ARC Training Centre for Molecular Technology in the Food Industry, Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nanju A Lee
- ARC Training Centre for Advanced Technologies in Food Manufacture, School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
15
|
Li H, Zhou R, Xu S, Chen X, Hong Y, Lu Q, Liu H, Zhou B, Liang X. Improving Gene Annotation of the Peanut Genome by Integrated Proteogenomics Workflow. J Proteome Res 2020; 19:2226-2235. [DOI: 10.1021/acs.jproteome.9b00723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Haifen Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for Crops Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou 510640, China
| | - Ruo Zhou
- Deepxomics Co., Ltd., Shenzhen 518000, China
| | - Shaohang Xu
- Deepxomics Co., Ltd., Shenzhen 518000, China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for Crops Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou 510640, China
| | - Yanbin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for Crops Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou 510640, China
| | - Qing Lu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for Crops Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou 510640, China
| | - Hao Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for Crops Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou 510640, China
| | - Baojin Zhou
- Deepxomics Co., Ltd., Shenzhen 518000, China
| | - Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for Crops Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou 510640, China
| |
Collapse
|
16
|
Li FH, Yu P, Song CH, Wu JJ, Tian Y, Wu XF, Zhang XW, Liu YM. Differential protein analysis of Heracleum moellendorffii Hance seeds during stratification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:10-20. [PMID: 31665663 DOI: 10.1016/j.plaphy.2019.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Heracleum moellendorffii Hance is a medicinal vegetable species, and the seed dormancy of this species has caused many agricultural problems. One stratification technique involves alternating layers of seeds and substrate to allow post-ripening of dormant seeds under appropriate environmental conditions and to release dormancy. Non-stratified seeds (NS), cotyledon-stage-embryo seeds (CS) and germinated seeds (GS) represent key stages of H. moellendorffii seeds during stratification. To better understand the breaking of dormancy caused by stratification, tandem mass tag (TMT) mass spectrometry (MS)/MS was used to detect proteins among NS, CS and GS. A total of 876 proteins were identified, which were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The results showed that carbohydrate metabolic processes, responses to stress and ribosome biogenesis were the main biological processes. The changes in protein accumulation were validated by qRT-PCR. The results showed that starch, sucrose, pyruvate and fatty acid metabolism played significant roles and that the contents of stored substances were gradually degraded during stratification. This study provides a theoretical basis in terms of proteomics for exploring the post-ripening and germination of H. moellendorffii seeds.
Collapse
Affiliation(s)
- F H Li
- College of Life Science, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China.
| | - P Yu
- College of Life Science, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - C H Song
- College of Life Science, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - J J Wu
- College of Life Science, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Y Tian
- College of Life Science, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - X F Wu
- College of Life Science, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - X W Zhang
- College of Life Science, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Y M Liu
- College of Life Science, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| |
Collapse
|
17
|
Du W, Xiong CW, Ding J, Nybom H, Ruan CJ, Guo H. Tandem Mass Tag Based Quantitative Proteomics of Developing Sea Buckthorn Berries Reveals Candidate Proteins Related to Lipid Metabolism. J Proteome Res 2019; 18:1958-1969. [PMID: 30990047 DOI: 10.1021/acs.jproteome.8b00764] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sea buckthorn ( Hippophae L.) is an economically important shrub or small tree distributed in Eurasia. Most of its well-recognized medicinal and nutraceutical products are derived from its berry oil, which is rich in monounsaturated omega-7 (C16:1) fatty acid and polyunsaturated omega-6 (C18:2) and omega-3 (C18:3) fatty acids. In this study, tandem mass tags (TMT)-based quantitative analysis was used to investigate protein profiles of lipid metabolism in sea buckthorn berries harvested 30, 50, and 70 days after flowering. In total, 8626 proteins were identified, 6170 of which were quantified. Deep analysis results for the proteins identified and related pathways revealed initial fatty acid accumulation during whole-berry development. The abundance of most key enzymes involved in fatty acid and triacylglycerol (TAG) biosynthesis peaked at 50 days after flowering, but TAG synthesis through the PDAT (phospholipid: diacylglycerol acyltransferase) pathway mostly occurred early in berry development. In addition, the patterns of proteins involved in lipid metabolism were confirmed by combined quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and parallel reaction monitoring analyses. Our data on the proteomic spectrum of sea buckthorn berries provide a scientific basic for understanding lipid metabolism and related pathways in the developing berries.
Collapse
Affiliation(s)
- Wei Du
- Institute of Plant Resources, Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education , Dalian Nationalities University , Dalian 116600 , China
| | - Chao-Wei Xiong
- Institute of Plant Resources, Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education , Dalian Nationalities University , Dalian 116600 , China
| | - Jian Ding
- Institute of Plant Resources, Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education , Dalian Nationalities University , Dalian 116600 , China
| | - Hilde Nybom
- Department of Plant Breeding-Balsgård , Swedish University of Agricultural Sciences , Fjälkestadsvägen 459 , SE-29194 Kristianstad , Sweden
| | - Cheng-Jiang Ruan
- Institute of Plant Resources, Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education , Dalian Nationalities University , Dalian 116600 , China
| | - Hai Guo
- Conseco Sea Buckthorn Co. Ltd. , Beijing 100038 , China.,Inner Mongolia Hijing Environment Protection Science and Technology Co. Ltd , Inner Mongolia 017000 , China
| |
Collapse
|
18
|
Identification of the Candidate Proteins Related to Oleic Acid Accumulation during Peanut ( Arachis hypogaea L.) Seed Development through Comparative Proteome Analysis. Int J Mol Sci 2018; 19:ijms19041235. [PMID: 29670063 PMCID: PMC5979506 DOI: 10.3390/ijms19041235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/14/2023] Open
Abstract
Peanuts (Arachis hypogaea L.) are an important oilseed crop, containing high contents of protein and fatty acids (FA). The major components of FA found in peanut oil are unsaturated FAs, including oleic acid (OA, C18:1) and linoleic acid (LOA, C18:2). Moreover, the high content of OA in peanut oil is beneficial for human health and long-term storage due to its antioxidant activity. However, the dynamic changes in proteomics related to OA accumulation during seed development still remain largely unexplored. In the present study, a comparative proteome analysis based on iTRAQ (isobaric Tags for Relative and Absolute Quantification) was performed to identify the critical candidate factors involved in OA formation. A total of 389 differentially expressed proteins (DEPs) were identified between high-oleate cultivar Kainong176 and low-oleate cultivar Kainong70. Among these DEPs, 201 and 188 proteins were upregulated and downregulated, respectively. In addition, these DEPs were categorized into biosynthesis pathways of unsaturated FAs at the early stage during the high-oleic peanut seed development, and several DEPs involved in lipid oxidation pathway were found at the stage of seed maturation. Meanwhile, 28 DEPs were sporadically distributed in distinct stages of seed formation, and their molecular functions were directly correlated to FA biosynthesis and degradation. Fortunately, the expression of FAB2 (stearoyl-acyl carrier protein desaturase), the rate-limiting enzyme in the upstream biosynthesis process of OA, was significantly increased in the early stage and then decreased in the late stage of seed development in the high-oleate cultivar Kainong176. Furthermore, real-time PCR verified the expression pattern of FAB2 at the mRNA level, which was consistent with its protein abundance. However, opposite results were found for the low-oleate cultivar Kainong70. Overall, the comparative proteome analysis provided valuable insight into the molecular dynamics of OA accumulation during peanut seed development.
Collapse
|