1
|
Reisman EG, Caruana NJ, Bishop DJ. Exercise training and changes in skeletal muscle mitochondrial proteins: from blots to "omics". Crit Rev Biochem Mol Biol 2024; 59:221-243. [PMID: 39288086 DOI: 10.1080/10409238.2024.2383408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/19/2024]
Abstract
Mitochondria are essential, membrane-enclosed organelles that consist of ∼1100 different proteins, which allow for many diverse functions critical to maintaining metabolism. Highly metabolic tissues, such as skeletal muscle, have a high mitochondrial content that increases with exercise training. The classic western blot technique has revealed training-induced increases in the relatively small number of individual mitochondrial proteins studied (∼5% of the >1100 proteins in MitoCarta), with some of these changes dependent on the training stimulus. Proteomic approaches have identified hundreds of additional mitochondrial proteins that respond to exercise training. There is, however, surprisingly little crossover in the mitochondrial proteins identified in the published human training studies. This suggests that to better understand the link between training-induced changes in mitochondrial proteins and metabolism, future studies need to move beyond maximizing protein detection to adopting methods that will increase the reliability of the changes in protein abundance observed.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Nikeisha J Caruana
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - David J Bishop
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| |
Collapse
|
2
|
A Hyperthermoactive-Cas9 Editing Tool Reveals the Role of a Unique Arsenite Methyltransferase in the Arsenic Resistance System of Thermus thermophilus HB27. mBio 2021; 12:e0281321. [PMID: 34872358 PMCID: PMC8649762 DOI: 10.1128/mbio.02813-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Arsenic detoxification systems can be found in a wide range of organisms, from bacteria to humans. In a previous study, we discovered an arsenic-responsive transcriptional regulator in the thermophilic bacterium Thermus thermophilus HB27 (TtSmtB). Here, we characterize the arsenic resistance system of T. thermophilus in more detail. We employed TtSmtB-based pulldown assays with protein extracts from cultures treated with arsenate and arsenite to obtain an S-adenosyl-l-methionine (SAM)-dependent arsenite methyltransferase (TtArsM). In vivo and in vitro analyses were performed to shed light on this new component of the arsenic resistance network and its peculiar catalytic mechanism. Heterologous expression of TtarsM in Escherichia coli resulted in arsenite detoxification at mesophilic temperatures. Although TtArsM does not contain a canonical arsenite binding site, the purified protein does catalyze SAM-dependent arsenite methylation with formation of monomethylarsenites (MMAs) and dimethylarsenites (DMAs). In addition, in vitro analyses confirmed the unique interaction between TtArsM and TtSmtB. Next, a highly efficient ThermoCas9-based genome-editing tool was developed to delete the TtArsM-encoding gene on the T. thermophilus genome and to confirm its involvement in the arsenite detoxification system. Finally, the TtarsX efflux pump gene in the T. thermophilus ΔTtarsM genome was substituted by a gene encoding a stabilized yellow fluorescent protein (sYFP) to create a sensitive genome-based bioreporter system for the detection of arsenic ions.
Collapse
|
3
|
Xiang H, Chen S, Zhou J, Guo J, Zhou Q, Zhou Q. Characterization of blood-derived exosomal proteins after exercise. J Int Med Res 2020; 48:300060520957541. [PMID: 32972266 PMCID: PMC7522842 DOI: 10.1177/0300060520957541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective To assess changes in plasma exosome levels and protein content in mice after long-term exercise. Methods We subjected 9-month-old adult C57BL/6J mice to daily treadmill running exercise for 4 weeks prior to the isolation of blood-derived exosomes. Exosomal proteins were identified using mass spectrometry. Results Extracellular bodies were successfully isolated from mouse blood. Protein levels were altered in blood-derived exosomes after chronic treadmill exercise. Levels of the secretagogue secretogranin 2 were markedly elevated in exercise-induced exosomes. Conclusion Our data suggest that levels of secretogranin 2 were increased in mouse exosomes following chronic treadmill exercise. We conclude that exercise increases exocrine secretion of secretogranin 2.
Collapse
Affiliation(s)
- Hongkai Xiang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shisheng Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junhan Zhou
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junxiu Guo
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education of PRC, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China
| | - Qingfeng Zhou
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qishuang Zhou
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Tomin T, Schittmayer M, Honeder S, Heininger C, Birner-Gruenberger R. Irreversible oxidative post-translational modifications in heart disease. Expert Rev Proteomics 2019; 16:681-693. [PMID: 31361162 PMCID: PMC6816499 DOI: 10.1080/14789450.2019.1645602] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
Abstract
Introduction: Development of specific biomarkers aiding early diagnosis of heart failure is an ongoing challenge. Biomarkers commonly used in clinical routine usually act as readouts of an already existing acute condition rather than disease initiation. Functional decline of cardiac muscle is greatly aggravated by increased oxidative stress and damage of proteins. Oxidative post-translational modifications occur already at early stages of tissue damage and are thus regarded as potential up-coming disease markers. Areas covered: Clinical practice regarding commonly used biomarkers for heart disease is briefly summarized. The types of oxidative post-translational modification in cardiac pathologies are discussed with a special focus on available quantitative techniques and characteristics of individual modifications with regard to their stability and analytical accessibility. As irreversible oxidative modifications trigger protein degradation pathways or cause protein aggregation, both influencing biomarker abundance, a chapter is dedicated to their regulation in the heart.
Collapse
Affiliation(s)
- Tamara Tomin
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Matthias Schittmayer
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Sophie Honeder
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Christoph Heininger
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
5
|
Gorini G, Gamberi T, Fiaschi T, Mannelli M, Modesti A, Magherini F. Irreversible plasma and muscle protein oxidation and physical exercise. Free Radic Res 2018; 53:126-138. [PMID: 30513020 DOI: 10.1080/10715762.2018.1542141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The imbalance between the reactive oxygen (ROS) and nitrogen (RNS) species production and their handling by the antioxidant machinery (low molecular weight antioxidant molecules and antioxidant enzymes), also known as oxidative stress, is a condition caused by physiological and pathological processes. Moreover, oxidative stress may be due to an overproduction of free radicals during physical exercise. Excess of radical species leads to the modification of molecules, such as proteins - the most susceptible to oxidative modification - lipids and DNA. With regard to the oxidation of proteins, carbonylation is an oxidative modification that has been widely described. Several studies have detected changes in the total amount of protein carbonyls following different types of physical exercise, but only few of these identified the specific amino acidic residues targets of such oxidation. In this respect, proteomic approaches allow to identify the proteins susceptible to carbonylation and in many cases, it is also possible to identify the specific protein carbonylation sites. This review focuses on the role of protein oxidation, and specifically carbonyl formation, for plasma and skeletal muscle proteins, following different types of physical exercise performed at different intensities. Furthermore, we focused on the proteomic strategies used to identify the specific protein targets of carbonylation. Overall, our analysis suggests that regular physical activity promotes a protection against protein carbonylation, due to the activation of the antioxidant defence or of the turnover of protein carbonyls. However, we can conclude that from the comprehensive bibliography analysed, there is no clearly defined specific physiological role about this post-translational modification of proteins.
Collapse
Affiliation(s)
- Giulia Gorini
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Tania Gamberi
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Tania Fiaschi
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Michele Mannelli
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Alessandra Modesti
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Francesca Magherini
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| |
Collapse
|
6
|
LMW-PTP modulates glucose metabolism in cancer cells. Biochim Biophys Acta Gen Subj 2018; 1862:2533-2544. [PMID: 30251652 DOI: 10.1016/j.bbagen.2018.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Low Molecular Weight Phosphotyrosine Protein Phosphatase (LMW-PTP) is an enzyme involved not only in tumor onset and progression but also in type 2 diabetes. A recent review shows that LMW-PTP acts on several RTK (receptor tyrosine kinase) such as PDGFR, EGFR, EphA2, Insulin receptor. It is well described also its interaction with cSrc. It is noteworthy that most of these conclusions are based on the use of cell lines expressing low levels of LMW-PTP. The aim of the present study was to discover new LMW-PTP substrates in aggressive human tumors where the over-expression of this phosphatase is a common feature. METHODS We investigated, by proteomic analysis, the protein phosphorylation pattern of A375 human melanoma cells silenced for LMW-PTP. Two-dimensional electrophoresis (2-DE) analysis, followed by western blot was performed using anti-phosphotyrosine antibodies, in order to identify differentially phosphorylated proteins. RESULTS Proteomic analysis pointed out that most of the identified proteins belong to the glycolytic metabolism, such as α-enolase, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase and triosephosphate isomerase, suggesting an involvement of LMW-PTP in glucose metabolism. Assessment of lactate production and oxygen consumption demonstrated that LMW-PTP silencing enhances glycolytic flux and slow down the oxidative metabolism. In particular, LMW-PTP expression affects PKM2 tyrosine-phosphorylation and nuclear localization, modulating its activity. CONCLUSION All these findings propose that tumor cells are subjected to metabolic reprogramming after LMW-PTP silencing, enhancing glycolytic flux, probably to compensate the inhibition of mitochondrial metabolism. GENERAL SIGNIFICANCE Our results highlight the involvement of LMW-PTP in regulating glucose metabolism in A375 melanoma cells.
Collapse
|
7
|
Eremina L, Pashintseva N, Kovalev L, Kovaleva M, Shishkin S. Proteomics of mammalian mitochondria in health and malignancy: From protein identification to function. Anal Biochem 2018; 552:4-18. [DOI: 10.1016/j.ab.2017.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/07/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
|
8
|
董 合, 吴 洪, 唐 钰, 黄 银, 林 锐, 赵 军, 徐 晓. [AMPK regulates mitochondrial oxidative stress in C2C12 myotubes induced by electrical stimulations of different intensities]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:742-747. [PMID: 29997099 PMCID: PMC6765703 DOI: 10.3969/j.issn.1673-4254.2018.06.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To study effect of electrical stimulations of different intensities on mitochondrial oxidative stress in C2C12 myotubes and explore the molecular mechanisms. METHODS After 7 days of differentiation, C2C12 myotubes were subjected to electrical stimulations (15 V, 3Hz, 30 ms) for 60, 120, or 180 min, and the morphological changes of muscular tubes were observed under inverted microscope. The levels of MDA and SOD activity of the cells were detected, and flow cytometry was used to detect mitochondrial reactive oxygen species (ROS) and membrane potential. Western blotting was used to detect the expression of PGC1, AMPK-Ser485, AMPK-Thr172, and AMPK in the cells. RESULTS No significant changes occurred in the morphology of C2C12 myotubes in response to electrical stimulations. Electrical stimulation for 60 min resulted in significantly increased levels of MDA, AMPK-Ser485 and AMPK-Thr172 in the cells (P<0.05); simulations of the cells for 120 and 180 min caused significantly increased MDA, ROS, mitochondrial ROS, AMPK-Ser485 and PGC1 along with marked reduction of mitochondrial membrane potential (P<0.05). CONCLUSION Electrical stimulation significantly activates oxidative stress, and a longer stimulation time causes stronger mitochondrial oxidation. AMPK-Thr172 regulates oxidative stress induced by stimulations for a moderate time length, while AMPK-Ser485 and PGC1 function to modulate oxidative stress following prolonged stimulations.
Collapse
Affiliation(s)
- 合玲 董
- 暨南大学体育学院,广东 广州 510632College of Sports Science, Jinan University, Guangzhou 510632, China
| | - 洪渊 吴
- 暨南大学体育学院,广东 广州 510632College of Sports Science, Jinan University, Guangzhou 510632, China
| | - 钰 唐
- 暨南大学体育学院,广东 广州 510632College of Sports Science, Jinan University, Guangzhou 510632, China
| | - 银伟 黄
- 暨南大学体育学院,广东 广州 510632College of Sports Science, Jinan University, Guangzhou 510632, China
| | - 锐章 林
- 暨南大学体育学院,广东 广州 510632College of Sports Science, Jinan University, Guangzhou 510632, China
| | - 军 赵
- 暨南大学体育学院,广东 广州 510632College of Sports Science, Jinan University, Guangzhou 510632, China
| | - 晓阳 徐
- 暨南大学体育学院,广东 广州 510632College of Sports Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Data on protein abundance alteration induced by chronic exercise in mdx mice model of Duchenne muscular dystrophy and potential modulation by apocynin and taurine. Data Brief 2018; 18:555-575. [PMID: 29900212 PMCID: PMC5996268 DOI: 10.1016/j.dib.2018.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/27/2018] [Accepted: 03/06/2018] [Indexed: 11/21/2022] Open
Abstract
Here we present original data related to the research paper entitled "Proteome analysis in dystrophic mdx mouse muscle reveals a drastic alteration of Key Metabolic and Contractile Proteins after chronic exercise and the potential modulation by anti-oxidant compounds" (Gamberi et al., 2018) [1]. The dystrophin-deficient mdx mouse is the most common animal model for Duchenne muscular dystrophy. The mdx mice phenotype of the disorder is milder than in human sufferers and it can be worsened by chronic treadmill exercise. Apocynin and taurine are two antioxidant compounds proved to be beneficial on some pathology related parameters (Schröder and Schoser, 2009) [2]. This article reports the detailed proteomic data on protein abundance alterations, in tibialis anterior muscle of mdx mice, induced by chronic exercise protocol. A selected group of mdx mice was also treated with apocynin and taurine during this protocol. Detailed MS data, comparison between mdx vs wild type, exercised mdx vs wild type, and complete analysis of spot variation are provided. Furthermore, in wild type mice subjected to the same exercise protocol, the abundance of key proteins, resulted modified in exercised mdx, were analyzed by western blot.
Collapse
|
10
|
Weißer J, Ctortecka C, Busch CJ, Austin SR, Nowikovsky K, Uchida K, Binder CJ, Bennett KL. A Comprehensive Analytical Strategy To Identify Malondialdehyde-Modified Proteins and Peptides. Anal Chem 2017; 89:3847-3852. [PMID: 28248083 DOI: 10.1021/acs.analchem.6b05065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mass spectrometric-based proteomics is a powerful tool to analyze post-translationally modified proteins. Carbonylation modifications that result from oxidative lipid breakdown are a class of post-translational modifications that are poorly characterized with respect to protein targets and function. This is partly due to the lack of dedicated mass spectrometry-based technologies to facilitate the analysis of these modifications. Here, we present a comprehensive approach to identify malondialdehyde-modified proteins and peptides. Malondialdehyde is among the most abundant of the lipid peroxidation products; and malondialdehyde-derived adducts on proteins have been implicated in cardiovascular diseases, neurodegenerative disorders, and other clinical conditions. Our integrated approach targets three levels of the overall proteomic workflow: (i) sample preparation, by employing a targeted enrichment strategy; (ii) high-performance liquid chromatography, by using a gradient optimized for the separation of the modified peptides; and (iii) tandem mass spectrometry, by improving the spectral quality of very low-abundance peptides. By applying the optimized procedure to a whole cell lysate spiked with a low amount of malondialdehyde-modified proteins, we were able to identify up to 350 different modified peptides and localize the modification to a specific lysine residue. This methodology allows the comprehensive analysis of malondialdehyde-modified proteins.
Collapse
Affiliation(s)
- Juliane Weißer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090, Vienna, Austria
| | - Claudia Ctortecka
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090, Vienna, Austria
| | - Clara J Busch
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna , 1090, Vienna, Austria
| | - Shane R Austin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090, Vienna, Austria.,Department of Internal Medicine I, Medical University of Vienna , 1090, Vienna, Austria
| | - Karin Nowikovsky
- Department of Internal Medicine I, Medical University of Vienna , 1090, Vienna, Austria
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya 464-8601, Japan
| | - Christoph J Binder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna , 1090, Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090, Vienna, Austria
| |
Collapse
|