1
|
Wang Y, Ge J, Xian W, Tang Z, Xue B, Yu J, Yao YF, Liu H, Qiu J, Liu X. Phosphorylation of the prokaryotic histone-like protein H-NS modulates bacterial virulence in Salmonella Typhimurium. Microbiol Res 2025; 292:128041. [PMID: 39736215 DOI: 10.1016/j.micres.2024.128041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025]
Abstract
H-NS is a prokaryotic histone-like protein that binds to bacterial chromosomal DNA with important regulatory roles in gene expression. Unlike histone proteins, hitherto post-translational modifications of H-NS are still largely uncharacterized, especially in bacterial pathogens. Salmonella Typhimurium is a primary enteric pathogen and its virulence is mainly dependent on specialized type III secretion systems (T3SSs), which were evolutionarily acquired via horizontal gene transfer. Previous studies have shown that H-NS plays a critical role in silencing foreign T3SS genes. Here, we found that H-NS is phosphorylated at multiple residues in S. Typhimurium, including S45, Y61, S78, S84, T86, and T106. Notably, we demonstrated that phosphorylation of H-NS S78 promotes its dissociation from DNA via a mechanism dependent on dimer formation, thereby leading to transcriptional activation of target genes. Functionally, phosphoryl-H-NS contributes to the expression of T3SS-associated proteins and hence increases bacterial virulence during infection. Therefore, our study reveals a novel mechanism by which covalent modifications of prokaryotic histone-like proteins regulate bacterial virulence of an important human pathogen.
Collapse
Affiliation(s)
- Ying Wang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wei Xian
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Baoshuai Xue
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jingchen Yu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huwei Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Infectious Diseases, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
2
|
Geddes-McAlister J, Hansmeier N. Quantitative Proteomics of the Intracellular Bacterial Pathogen Salmonella enterica Serovar Typhimurium. Methods Mol Biol 2024; 2813:107-115. [PMID: 38888773 DOI: 10.1007/978-1-0716-3890-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Mass spectrometry-based proteomics provides a wealth of information about changes in protein production and abundance under diverse conditions, as well as mechanisms of regulation, signaling cascades, interaction partners, and communication patterns across biological systems. For profiling of intracellular pathogens, proteomic profiling can be performed in the absence of a host to singularly define the pathogenic proteome or during an infection-like setting to identify dual perspectives of infection. In this chapter, we present techniques to extract proteins from the human bacterial intracellular pathogen, Salmonella enterica serovar Typhimurium, in the presence of macrophages, an important innate immune cell in host defense. We outline sample preparation, including protein extraction, digestion, and purification, as well as mass spectrometry measurements and bioinformatics analysis. The data generated from our dual perspective profiling approach provides new insight into pathogen and host protein modulation under infection-like conditions.
Collapse
Affiliation(s)
- Jennifer Geddes-McAlister
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada.
- Canadian Proteomics and Artificial Intelligence Consortium, Guelph, ON, Canada.
| | | |
Collapse
|
3
|
Fels U, Willems P, De Meyer M, Gevaert K, Van Damme P. Shift in vacuolar to cytosolic regime of infecting Salmonella from a dual proteome perspective. PLoS Pathog 2023; 19:e1011183. [PMID: 37535689 PMCID: PMC10426988 DOI: 10.1371/journal.ppat.1011183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/15/2023] [Accepted: 06/19/2023] [Indexed: 08/05/2023] Open
Abstract
By applying dual proteome profiling to Salmonella enterica serovar Typhimurium (S. Typhimurium) encounters with its epithelial host (here, S. Typhimurium infected human HeLa cells), a detailed interdependent and holistic proteomic perspective on host-pathogen interactions over the time course of infection was obtained. Data-independent acquisition (DIA)-based proteomics was found to outperform data-dependent acquisition (DDA) workflows, especially in identifying the downregulated bacterial proteome response during infection progression by permitting quantification of low abundant bacterial proteins at early times of infection when bacterial infection load is low. S. Typhimurium invasion and replication specific proteomic signatures in epithelial cells revealed interdependent host/pathogen specific responses besides pointing to putative novel infection markers and signalling responses, including regulated host proteins associated with Salmonella-modified membranes.
Collapse
Affiliation(s)
- Ursula Fels
- iRIP unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Patrick Willems
- iRIP unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Margaux De Meyer
- iRIP unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- iRIP unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Li XM, Huang S, Li XD. Photo-ANA enables profiling of host-bacteria protein interactions during infection. Nat Chem Biol 2023; 19:614-623. [PMID: 36702958 DOI: 10.1038/s41589-022-01245-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens rapidly change and adapt their proteome to cope with the environment in host cells and secrete effector proteins to hijack host targets and ensure their survival and proliferation during infection. Excessive host proteins make it difficult to profile pathogens' proteome dynamics by conventional proteomics. It is even more challenging to map pathogen-host protein-protein interactions in real time, given the low abundance of bacterial effectors and weak and transient interactions in which they may be involved. Here we report a method for selectively labeling bacterial proteomes using a bifunctional amino acid, photo-ANA, equipped with a bio-orthogonal handle and a photoreactive warhead, which enables simultaneous analysis of bacterial proteome reprogramming and pathogen-host protein interactions of Salmonella enterica serovar Typhimurium (S. Typhimurium) during infection. Using photo-ANA, we identified FLOT1/2 as host interactors of S. Typhimurium effector PipB2 in late-stage infection and globally profiled the extensive interactions between host proteins and pathogens during infection.
Collapse
Affiliation(s)
- Xiao-Meng Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Siyue Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Wang W, Yue Y, Zhang M, Song N, Jia H, Dai Y, Zhang F, Li C, Li B. Host acid signal controls Salmonella flagella biogenesis through CadC-YdiV axis. Gut Microbes 2022; 14:2146979. [PMID: 36456534 PMCID: PMC9728131 DOI: 10.1080/19490976.2022.2146979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Upon entering host cells, Salmonella quickly turns off flagella biogenesis to avoid recognition by the host immune system. However, it is not clear which host signal(s) Salmonella senses to initiate flagellum control. Here, we demonstrate that the acid signal can suppress flagella synthesis and motility of Salmonella, and this occurs after the transcription of master flagellar gene flhDC and depends on the anti-FlhDC factor YdiV. YdiV expression is activated after acid treatment. A global screen with ydiV promoter DNA and total protein from acid-treated Salmonella revealed a novel regulator of YdiV, the acid-related transcription factor CadC. Further studies showed that CadCC, the DNA binding domain of CadC, directly binds to a 33 nt region of the ydiV promoter with a 0.2 μM KD affinity. Furthermore, CadC could separate H-NS-ydiV promoter DNA complex to form CadC-DNA complex at a low concentration. Structural simulation and mutagenesis assays revealed that H43 and W106 of CadC are essential for ydiV promoter binding. No acid-induced flagellum control phenotype was observed in cadC mutant or ydiV mutant strains, suggesting that flagellum control during acid adaption is dependent on CadC and YdiV. The intracellular survival ability of cadC mutant strain decreased significantly compared with WT strain while the flagellin expression could not be effectively controlled in the cadC mutant strain when surviving within host cells. Together, our results demonstrated that acid stress acts as an important host signal to trigger Salmonella flagellum control through the CadC-YdiV-FlhDC axis, allowing Salmonella to sense a hostile environment and regulate flagellar synthesis during infection.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuanji Dai
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, China
| | - Cuiling Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China,Shandong First Medical University, Key Lab for Biotech-Drugs of National Health Commission, Jinan, China,KeyLaboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China,CONTACT Bingqing Li Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021Shandong, China
| |
Collapse
|
6
|
Fan HH, Fang SB, Chang YC, Huang ST, Huang CH, Chang PR, Chang WC, Yang LTL, Lin PC, Cheng HY. Effects of colonization-associated gene yqiC on global transcriptome, cellular respiration, and oxidative stress in Salmonella Typhimurium. J Biomed Sci 2022; 29:102. [PMID: 36457101 PMCID: PMC9714038 DOI: 10.1186/s12929-022-00885-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND yqiC is required for colonizing the Salmonella enterica serovar Typhimurium (S. Typhimurium) in human cells; however, how yqiC regulates nontyphoidal Salmonella (NTS) genes to influence bacteria-host interactions remains unclear. METHODS The global transcriptomes of S. Typhimurium yqiC-deleted mutant (ΔyqiC) and its wild-type strain SL1344 after 2 h of in vitro infection with Caco-2 cells were obtained through RNA sequencing to conduct comparisons and identify major yqiC-regulated genes, particularly those involved in Salmonella pathogenicity islands (SPIs), ubiquinone and menaquinone biosynthesis, electron transportation chains (ETCs), and carbohydrate/energy metabolism. A Seahorse XFp Analyzer and assays of NADH/NAD+ and H2O2 were used to compare oxygen consumption and extracellular acidification, glycolysis parameters, adenosine triphosphate (ATP) generation, NADH/NAD+ ratios, and H2O2 production between ΔyqiC and SL1344. RESULTS After S. Typhimurium interacts with Caco-2 cells, yqiC represses gene upregulation in aspartate carbamoyl transferase, type 1 fimbriae, and iron-sulfur assembly, and it is required for expressing ilvB operon, flagellin, tdcABCD, and dmsAB. Furthermore, yqiC is required for expressing mainly SPI-1 genes and specific SPI-4, SPI-5, and SPI-6 genes; however, it diversely regulates SPI-2 and SPI-3 gene expression. yqiC significantly contributes to menD expression in menaquinone biosynthesis. A Kyoto Encyclopedia of Genes and Genomes analysis revealed the extensive association of yqiC with carbohydrate and energy metabolism. yqiC contributes to ATP generation, and the analyzer results demonstrate that yqiC is required for maintaining cellular respiration and metabolic potential under energy stress and for achieving glycolysis, glycolytic capacity, and glycolytic reserve. yqiC is also required for expressing ndh, cydA, nuoE, and sdhB but suppresses cyoC upregulation in the ETC of aerobically and anaerobically grown S. Typhimurium; priming with Caco-2 cells caused a reversed regulation of yiqC toward upregulation in these ETC complex genes. Furthermore, yqiC is required for maintaining NADH/NAD+ redox status and H2O2 production. CONCLUSIONS Specific unreported genes that were considerably regulated by the colonization-associated gene yqiC in NTS were identified, and the key role and tentative mechanisms of yqiC in the extensive modulation of virulence factors, SPIs, ubiquinone and menaquinone biosynthesis, ETCs, glycolysis, and oxidative stress were discovered.
Collapse
Affiliation(s)
- Hung-Hao Fan
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412955.e0000 0004 0419 7197Department of Emergency Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shiuh-Bin Fang
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Master Program for Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chu Chang
- grid.412896.00000 0000 9337 0481Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Tung Huang
- grid.412087.80000 0001 0001 3889Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Chih-Hung Huang
- grid.412087.80000 0001 0001 3889Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Pei-Ru Chang
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chiao Chang
- grid.412896.00000 0000 9337 0481Master Program for Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Lauderdale Tsai-Ling Yang
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Chun Lin
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan
| | - Hung-Yen Cheng
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan
| |
Collapse
|
7
|
Abstract
Bacterial flagellin activates the host immune system and triggers pyroptosis. Salmonella reduces flagellin expression when it survives within host cells. Here, we found that the UMPylator YdiU significantly altered the Salmonella flagellar biogenesis process upon host cell entry. The expression levels of class II and class III flagellar genes, but not the class I flagellar genes flhDC, were dramatically increased in a ΔydiU strain compared to wild-type (WT) Salmonella in a host-simulating environment. A direct interaction between YdiU and FlhDC was detected by bacterial two-hybrid assay. Furthermore, YdiU efficiently catalyzed the UMPylation of FlhC but not FlhD, FliA, or FliC. UMPylation of FlhC completely eliminated its DNA-binding activity. In vivo experiments showed that YdiU was required and sufficient for Salmonella flagellar control within host cells. Mice infected with the ΔydiU strain died much earlier than WT strain-infected mice and developed much more severe inflammation and injury in organs and much higher levels of cytokines in blood, demonstrating that early host death induced by the ΔydiU strain is probably due to excessive inflammation. Our results indicate that YdiU acts as an essential factor of Salmonella to mediate host immune escape.
Collapse
|
8
|
Abstract
Iron limitation is a universal strategy of host immunity during bacterial infection. However, the mechanisms by which pathogens antagonize host nutritional immunity have not been fully elucidated. Here, we identified a requirement for the UMPylator YdiU for this process in Salmonella. The expression of YdiU was dramatically induced by the metal starvation signal. The intracellular iron content was much lower in the ΔydiU strain than in wild-type Salmonella, and the ΔydiU strain exhibited severe growth defect under metal deficiency environments. Genome-wide expression analyses revealed significantly decreased expression of iron uptake genes in ΔydiU strain compared with the wild-type strain. Interestingly, YdiU did not affect the expression level of the major iron uptake regulator Fur but directly UMPylated Fur on its H118 residue in vivo and in vitro. UMPylation destroyed the Fur dimer, promoted Fur aggregation, and eliminated the DNA-binding activity of Fur, thus abolishing the ability of Fur to inhibit iron uptake. Restricting Fur to the deUMPylated state dramatically eliminates Salmonella iron uptake in iron deficiency environments. In parallel, YdiU facilitates Salmonella survival within host cells by regulating the iron uptake pathway.
Collapse
|
9
|
Torres-Sangiao E, Giddey AD, Leal Rodriguez C, Tang Z, Liu X, Soares NC. Proteomic Approaches to Unravel Mechanisms of Antibiotic Resistance and Immune Evasion of Bacterial Pathogens. Front Med (Lausanne) 2022; 9:850374. [PMID: 35586072 PMCID: PMC9108449 DOI: 10.3389/fmed.2022.850374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic “Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens,” this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice.
Collapse
Affiliation(s)
- Eva Torres-Sangiao
- Clinical Microbiology Lab, University Hospital Marqués de Valdecilla, Santander, Spain
- Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), Santander, Spain
- *Correspondence: Eva Torres-Sangiao,
| | - Alexander Dyason Giddey
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Cristina Leal Rodriguez
- Copenhagen Prospectives Studies on Asthma in Childhood, COPSAC, Copenhagen University Hospital, Herlev-Gentofte, Denmark
| | - Zhiheng Tang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Nelson C. Soares
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Nelson C. Soares,
| |
Collapse
|
10
|
Cohen H, Hoede C, Scharte F, Coluzzi C, Cohen E, Shomer I, Mallet L, Holbert S, Serre RF, Schiex T, Virlogeux-Payant I, Grassl GA, Hensel M, Chiapello H, Gal-Mor O. Intracellular Salmonella Paratyphi A is motile and differs in the expression of flagella-chemotaxis, SPI-1 and carbon utilization pathways in comparison to intracellular S. Typhimurium. PLoS Pathog 2022; 18:e1010425. [PMID: 35381053 PMCID: PMC9012535 DOI: 10.1371/journal.ppat.1010425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/15/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022] Open
Abstract
Although Salmonella Typhimurium (STM) and Salmonella Paratyphi A (SPA) belong to the same phylogenetic species, share large portions of their genome and express many common virulence factors, they differ vastly in their host specificity, the immune response they elicit, and the clinical manifestations they cause. In this work, we compared their intracellular transcriptomic architecture and cellular phenotypes during human epithelial cell infection. While transcription induction of many metal transport systems, purines, biotin, PhoPQ and SPI-2 regulons was similar in both intracellular SPA and STM, we identified 234 differentially expressed genes that showed distinct expression patterns in intracellular SPA vs. STM. Surprisingly, clear expression differences were found in SPI-1, motility and chemotaxis, and carbon (mainly citrate, galactonate and ethanolamine) utilization pathways, indicating that these pathways are regulated differently during their intracellular phase. Concurring, on the cellular level, we show that while the majority of STM are non-motile and reside within Salmonella-Containing Vacuoles (SCV), a significant proportion of intracellular SPA cells are motile and compartmentalized in the cytosol. Moreover, we found that the elevated expression of SPI-1 and motility genes by intracellular SPA results in increased invasiveness of SPA, following exit from host cells. These findings demonstrate unexpected flagellum-dependent intracellular motility of a typhoidal Salmonella serovar and intriguing differences in intracellular localization between typhoidal and non-typhoidal salmonellae. We propose that these differences facilitate new cycles of host cell infection by SPA and may contribute to the ability of SPA to disseminate beyond the intestinal lamina propria of the human host during enteric fever. Salmonella enterica is a ubiquitous, facultative intracellular animal and human pathogen. Although non-typhoidal Salmonella (NTS) and typhoidal Salmonella serovars belong to the same phylogenetic species and share many virulence factors, the disease they cause in humans is very different. While the underlying mechanisms for these differences are not fully understood, one possible reason expected to contribute to their different pathogenicity is a distinct expression pattern of genes involved in host-pathogen interactions. Here, we compared the global gene expression and intracellular phenotypes, during human epithelial cell infection of S. Paratyphi A (SPA) and S. Typhimurium (STM), as prototypical serovars of typhoidal and NTS, respectively. Interestingly, we identified different expression patterns in key virulence and metabolic pathways, cytosolic motility and increased reinvasion of SPA, following exit from infected cells. We hypothesize that these differences contribute to the invasive and systemic disease developed following SPA infection in humans.
Collapse
Affiliation(s)
- Helit Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Claire Hoede
- Université Fédérale de Toulouse, INRAE, BioinfOmics, UR MIAT, GenoToul Bioinformatics facility, 31326, Castanet-Tolosan, France
| | - Felix Scharte
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Charles Coluzzi
- INRAE, Université Paris-Saclay, MaIAGE, Jouy-en-Josas, France
| | - Emiliano Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Inna Shomer
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ludovic Mallet
- Université Fédérale de Toulouse, INRAE, BioinfOmics, UR MIAT, GenoToul Bioinformatics facility, 31326, Castanet-Tolosan, France
| | | | | | - Thomas Schiex
- Université Fédérale de Toulouse, ANITI, INRAE, Toulouse, France
| | | | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs–Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
- * E-mail: (MH); (HC); (OG-M)
| | - Hélène Chiapello
- Université Fédérale de Toulouse, INRAE, BioinfOmics, UR MIAT, GenoToul Bioinformatics facility, 31326, Castanet-Tolosan, France
- INRAE, Université Paris-Saclay, MaIAGE, Jouy-en-Josas, France
- * E-mail: (MH); (HC); (OG-M)
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail: (MH); (HC); (OG-M)
| |
Collapse
|
11
|
Wang W, Yue Y, Zhang M, Song N, Jia H, Dai Y, Zhang F, Li C, Li B. Host acid signal controls Salmonella flagella biogenesis through CadC-YdiV axis. Gut Microbes 2022. [PMID: 36456534 DOI: 10.1080/194909762125747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Upon entering host cells, Salmonella quickly turns off flagella biogenesis to avoid recognition by the host immune system. However, it is not clear which host signal(s) Salmonella senses to initiate flagellum control. Here, we demonstrate that the acid signal can suppress flagella synthesis and motility of Salmonella, and this occurs after the transcription of master flagellar gene flhDC and depends on the anti-FlhDC factor YdiV. YdiV expression is activated after acid treatment. A global screen with ydiV promoter DNA and total protein from acid-treated Salmonella revealed a novel regulator of YdiV, the acid-related transcription factor CadC. Further studies showed that CadCC, the DNA binding domain of CadC, directly binds to a 33 nt region of the ydiV promoter with a 0.2 μM KD affinity. Furthermore, CadC could separate H-NS-ydiV promoter DNA complex to form CadC-DNA complex at a low concentration. Structural simulation and mutagenesis assays revealed that H43 and W106 of CadC are essential for ydiV promoter binding. No acid-induced flagellum control phenotype was observed in cadC mutant or ydiV mutant strains, suggesting that flagellum control during acid adaption is dependent on CadC and YdiV. The intracellular survival ability of cadC mutant strain decreased significantly compared with WT strain while the flagellin expression could not be effectively controlled in the cadC mutant strain when surviving within host cells. Together, our results demonstrated that acid stress acts as an important host signal to trigger Salmonella flagellum control through the CadC-YdiV-FlhDC axis, allowing Salmonella to sense a hostile environment and regulate flagellar synthesis during infection.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuanji Dai
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, China
| | - Cuiling Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Shandong First Medical University, Key Lab for Biotech-Drugs of National Health Commission, Jinan, China
- KeyLaboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| |
Collapse
|
12
|
Wang Y, Wu C, Gao J, Du X, Chen X, Zhang M. Host metabolic shift during systemic Salmonella infection revealed by comparative proteomics. Emerg Microbes Infect 2021; 10:1849-1861. [PMID: 34461813 PMCID: PMC8451668 DOI: 10.1080/22221751.2021.1974316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a food-borne bacterium that causes acute gastroenteritis in humans and typhoid fever in mice. Salmonella pathogenicity island II (SPI-2) is an important virulence gene cluster responsible for Salmonella survival and replication within host cells, leading to systemic infection. Previous studies have suggested that SPI-2 function to modulate host vesicle trafficking and immune response to promote systemic infection. However, the molecular mechanism and the host responses triggered by SPI-2 remain largely unknown. To assess the roles of SPI-2, we used a differential proteomic approach to analyse host proteins levels during systemic infections in mice. Our results showed that infection by WT S. Typhimurium triggered the reprogramming of host cell metabolism and inflammatory response. Salmonella systemic infection induces an up-regulation of glycolytic process and a repression of the tricarboxylic acid (TCA) cycle. WT-infected tissues prefer to produce adenosine 5′-triphosphate (ATP) through aerobic glycolysis rather than relying on oxidative phosphorylation to generate energy. Moreover, our data also revealed that infected macrophages may undergo both M1 and M2 polarization. In addition, our results further suggest that SPI-2 is involved in altering actin cytoskeleton to facilitate the Salmonella-containing vacuole (SCV) biogenesis and perhaps even the release of bacteria later in the infection process. Results from our study provide valuable insights into the roles of SPI-2 during systemic Salmonella infection and will guide future studies to dissect the molecular mechanisms of how SPI-2 functions in vivo.
Collapse
Affiliation(s)
- Yuanyuan Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Chunmei Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jiacong Gao
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Xudong Du
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Xiangyun Chen
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Mei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
13
|
Li S, Pang Y, Zhang S, Li Q, Wang Q, Wang L, Feng L. Transcriptomic analysis reveals that the small protein MgtS contributes to the virulence of uropathogenic Escherichia coli. Microb Pathog 2021; 152:104765. [PMID: 33524567 DOI: 10.1016/j.micpath.2021.104765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common pathogen causing urinary tract infections (UTIs). The pathogenesis of UPEC relies on the formation of intracellular bacterial communities (IBCs) after invading bladder epithelial cells (BECs). In this study, the gene expression profiles of UPEC after invading BECs were comprehensively analyzed using RNA sequencing to reveal potential virulence-related genes. The small protein MgtS, which is transcriptionally upregulated in BECs, was further investigated. It was found that MgtS contributed positively to UPEC invasion of BECs and colonization in murine bladders. A two-component regulatory system, PhoPQ was confirmed as a direct activator of mgtS expression in BECs, and magnesium limitation is proposed as a host cue for the activation. This study provides the first comprehensive analysis of the transcriptome profile of UPEC during its intra-BECs life, revealing a new virulence-associated gene and its regulatory mechanism.
Collapse
Affiliation(s)
- Shujie Li
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
| | - Yu Pang
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
| | - Si Zhang
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
| | - Qing Li
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
| | - Qian Wang
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
| | - Lei Wang
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
| | - Lu Feng
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.
| |
Collapse
|
14
|
Chen J, Karanth S, Pradhan AK. Quantitative microbial risk assessment for Salmonella: Inclusion of whole genome sequencing and genomic epidemiological studies, and advances in the bioinformatics pipeline. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2020; 2:100045. [DOI: 10.1016/j.jafr.2020.100045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Contributions of Mass Spectrometry-Based Proteomics to Understanding Salmonella-Host Interactions. Pathogens 2020; 9:pathogens9070581. [PMID: 32708900 PMCID: PMC7400052 DOI: 10.3390/pathogens9070581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/02/2023] Open
Abstract
As a model pathogen, Salmonella invades both phagocytic and non-phagocytic host cells and adopts an intracellular lifestyle in a membrane-bound compartment during infection. Therefore, a systemic overview of Salmonella adaptations to distinct host cells together with host remodeling will assist us in charting the landscape of host-pathogen interactions. Central to the Salmonella-host interplay are bacterial virulence factors (effectors) that are injected into host cells by type III secretion systems (T3SSs). Despite great progress, functional studies of bacterial effectors have experienced daunting challenges as well. In the last decade, mass spectrometry-based proteomics has evolved into a powerful technological platform that can quantitatively measure thousands of proteins in terms of their expression as well as post-translational modifications. Here, we will review the applications of high-throughput proteomic technologies in understanding the dynamic reprogramming of both Salmonella and host proteomes during the course of infection. Furthermore, we will summarize the progress in utilizing affinity purification-mass spectrometry to screen for host substrates of Salmonella T3SS effectors. Finally, we will critically discuss some limitations/challenges with current proteomic platforms in the context of host-pathogen interactions and highlight some emerging technologies that may offer the promise of tackling these problems.
Collapse
|
16
|
Salmonella enterica Requires Lipid Metabolism Genes To Replicate in Proinflammatory Macrophages and Mice. Infect Immun 2019; 88:IAI.00776-19. [PMID: 31611277 DOI: 10.1128/iai.00776-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 12/28/2022] Open
Abstract
To survive and replicate during infection, pathogens utilize different carbon and energy sources depending on the nutritional landscape of their host microenvironment. Salmonella enterica serovar Typhimurium is an intracellular bacterial pathogen that occupies diverse cellular niches. While it is clear that Salmonella Typhimurium requires access to glucose during systemic infection, data on the need for lipid metabolism are mixed. We report that Salmonella Typhimurium strains lacking lipid metabolism genes were defective for systemic infection of mice. Bacterial lipid import, β-oxidation, and glyoxylate shunt genes were required for tissue colonization upon oral or intraperitoneal inoculation. In cultured macrophages, lipid import and β-oxidation genes were required for bacterial replication and/or survival only when the cell culture medium was supplemented with nonessential amino acids. Removal of glucose from tissue culture medium further enhanced these phenotypes and, in addition, conferred a requirement for glyoxylate shunt genes. We also observed that Salmonella Typhimurium needs lipid metabolism genes in proinflammatory but not anti-inflammatory macrophages. These results suggest that during systemic infection, the Salmonella Typhimurium that relies upon host lipids to replicate is within proinflammatory macrophages that have access to amino acids but not glucose. An improved understanding of the host microenvironments in which pathogens have specific metabolic requirements may facilitate the development of targeted approaches to treatment.
Collapse
|
17
|
Noster J, Chao TC, Sander N, Schulte M, Reuter T, Hansmeier N, Hensel M. Proteomics of intracellular Salmonella enterica reveals roles of Salmonella pathogenicity island 2 in metabolism and antioxidant defense. PLoS Pathog 2019; 15:e1007741. [PMID: 31009521 PMCID: PMC6497321 DOI: 10.1371/journal.ppat.1007741] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 05/02/2019] [Accepted: 03/28/2019] [Indexed: 11/18/2022] Open
Abstract
Intracellular Salmonella enterica serovar Typhimurium (STM) deploy the Salmonella Pathogenicity Island 2-encoded type III secretion system (SPI2-T3SS) for the massive remodeling of the endosomal system for host cells. This activity results in formation of an extensive interconnected tubular network of Salmonella-induced filaments (SIFs) connected to the Salmonella-containing vacuole (SCV). Such network is absent in cells infected with SPI2-T3SS-deficient mutant strains such as ΔssaV. A tubular network with reduced dimensions is formed if SPI2-T3SS effector protein SseF is absent. Previous single cell live microscopy-based analyses revealed that intracellular proliferation of STM is directly correlated to the ability to transform the host cell endosomal system into a complex tubular network. This network may also abrogate host defense mechanisms such as delivery of antimicrobial effectors to the SCV. To test the role of SIFs in STM patho-metabolism, we performed quantitative comparative proteomics of STM recovered from infected murine macrophages. We infected RAW264.7 cells with STM wild type (WT), ΔsseF or ΔssaV strains, recovered bacteria 12 h after infection and determined proteome compositions. Increased numbers of proteins characteristic for nutritional starvation were detected in STM ΔsseF and ΔssaV compared to WT. In addition, STM ΔssaV, but not ΔsseF showed signatures of increased exposure to stress by antimicrobial defenses, in particular reactive oxygen species, of the host cells. The proteomics analyses presented here support and extend the role of SIFs for the intracellular lifestyle of STM. We conclude that efficient manipulation of the host cell endosomal system by effector proteins of the SPI2-T3SS contributes to nutrition, as well as to resistance against antimicrobial host defense mechanisms. The facultative intracellular bacterium Salmonella enterica has evolved sophisticated mechanisms to adapt to life inside a pathogen-containing vacuole in mammalian host cells. Intracellular Salmonella manipulate the host cell endosomal system resulting in formation of a complex network of tubular vesicles, termed Salmonella-induced filaments (SIFs). We applied quantitative proteomics to intracellular Salmonella in murine macrophages and compared the wild-type strain to mutant strains with aberrant SIF architecture, or no capacity for induction of SIF. We determined that those mutant strains contain higher amounts of transporters for nutrient uptake, and lower amounts of proteins for central carbon metabolism. These observations indicate response to nutrient restriction in absence of fully established SIF. In addition, the mutant strain unable to induce SIF formation showed increased amounts of proteins required for response to antimicrobial factors of the host cells. These data show that the massive remodeling of the endosomal system of host cells by intracellular Salmonella serves to essential needs, i.e. to enable access to nutrients for efficient proliferation of the pathogen, and to withstand hostile conditions within the pathogen-containing vacuole.
Collapse
Affiliation(s)
- Janina Noster
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Tzu-Chiao Chao
- Institute of Environmental Change & Society, University of Regina, Regina, Canada
| | - Nathalie Sander
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Marc Schulte
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Tatjana Reuter
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Nicole Hansmeier
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany.,Institute of Environmental Change & Society, University of Regina, Regina, Canada
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
18
|
Salmonella Proteomic Profiling during Infection Distinguishes the Intracellular Environment of Host Cells. mSystems 2019; 4:mSystems00314-18. [PMID: 30984873 PMCID: PMC6456673 DOI: 10.1128/msystems.00314-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
Salmonella Typhimurium is one of the leading causes of foodborne bacterial infection. Nevertheless, how Salmonella adapts to distinct types of host cells during infection remains poorly understood. By contrasting intracellular Salmonella proteomes from both infected macrophages and epithelial cells, we found striking proteomic signatures specific to particular types of host cells. Notably, Salmonella proteomic remodeling exhibited quicker kinetics in macrophages than in epithelial cells with respect to bacterial virulence and flagellar and chemotaxis systems. Furthermore, we unveiled high levels of induction of bacterial histidine biosynthesis in macrophages but not in epithelial cells, which is attributable to differing intracellular levels of this amino acid. Intriguingly, we found that a defective hisG gene renders a Salmonella strain hypersensitive to histidine shortage in macrophages. Overall, our work reveals specific Salmonella adaptation mechanisms in distinct host cells, which should aid in the development of novel anti-infection strategies. Essential to bacterial pathogenesis, Salmonella enterica serovar Typhimurium (S. Typhimurium) has evolved the capacity to quickly sense and adapt to specific intracellular environment within distinct host cells. Here we examined S. Typhimurium proteomic remodeling within macrophages, allowing direct comparison with our previous studies in epithelial cells. In addition to many shared features, our data revealed proteomic signatures highly specific to one type of host cells. Notably, intracellular S. Typhimurium differentially regulates the two type III secretion systems (T3SSs) far more quickly in macrophages than in epithelial cells; bacterial flagellar and chemotaxis systems degenerate more quickly in macrophages than in HeLa cells as well. Importantly, our comparative analysis uncovered high levels of induction of bacterial histidine biosynthesis in macrophages but not in epithelial cells. Targeted metabolomic measurements revealed markedly lower histidine levels within macrophages. Intriguingly, further functional studies established that histidine biosynthesis that is defective (due to a hisG mutation) renders the bacterium (strain SL1344) hypersensitive to intracellular shortage of this amino acid. Indeed, another S. Typhimurium strain, namely, strain 14028s, with a fully functional biosynthetic pathway exhibited only minor induction of the his operon within infected macrophages. Our work thus provided novel insights into S. Typhimurium adaptation mechanisms within distinct host cells and also provided an elegant paradigm where proteomic profiling of intracellular pathogens is utilized to discriminate specific host environments (e.g., on the basis of nutrient availability). IMPORTANCESalmonella Typhimurium is one of the leading causes of foodborne bacterial infection. Nevertheless, how Salmonella adapts to distinct types of host cells during infection remains poorly understood. By contrasting intracellular Salmonella proteomes from both infected macrophages and epithelial cells, we found striking proteomic signatures specific to particular types of host cells. Notably, Salmonella proteomic remodeling exhibited quicker kinetics in macrophages than in epithelial cells with respect to bacterial virulence and flagellar and chemotaxis systems. Furthermore, we unveiled high levels of induction of bacterial histidine biosynthesis in macrophages but not in epithelial cells, which is attributable to differing intracellular levels of this amino acid. Intriguingly, we found that a defective hisG gene renders a Salmonella strain hypersensitive to histidine shortage in macrophages. Overall, our work reveals specific Salmonella adaptation mechanisms in distinct host cells, which should aid in the development of novel anti-infection strategies.
Collapse
|
19
|
Zhang B, Ran L, Wu M, Li Z, Jiang J, Wang Z, Cheng S, Fu J, Liu X. Shigellaflexneri Regulator SlyA Controls Bacterial Acid Resistance by Directly Activating the Glutamate Decarboxylation System. Front Microbiol 2018; 9:2071. [PMID: 30233544 PMCID: PMC6128205 DOI: 10.3389/fmicb.2018.02071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/14/2018] [Indexed: 01/02/2023] Open
Abstract
Shigella flexneri is an important foodborne bacterial pathogen with infectious dose as low as 10–100 cells. SlyA, a transcriptional regulator of the MarR family, has been shown to regulate virulence in a closely related bacterial pathogen, Salmonella Typhimurium. However, the regulatory role of SlyA in S. flexneri is less understood. Here we applied unbiased proteomic profiling to define the SlyA regulon in S. flexneri. We found that the genetic ablation of slyA led to the alteration of 18 bacterial proteins among over 1400 identifications. Intriguingly, most down-regulated proteins (whose expression is SlyA-dependent) were associated with bacterial acid resistance such as the glutamate decarboxylation system. We further demonstrated that SlyA directly regulates the expression of GadA, a glutamate decarboxylase, by binding to the promotor region of its coding gene. Importantly, overexpression of GadA was able to rescue the survival defect of the ΔslyA mutant under acid stress. Therefore, our study highlights a major role of SlyA in controlling S. flexneri acid resistance and provides a molecular mechanism underlying such regulation as well.
Collapse
Affiliation(s)
- Buyu Zhang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Longhao Ran
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mei Wu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zezhou Li
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiezhang Jiang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhen Wang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Sen Cheng
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiaqi Fu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
20
|
A Proteomic View of Salmonella Typhimurium in Response to Phosphate Limitation. Proteomes 2018; 6:proteomes6020019. [PMID: 29693629 PMCID: PMC6027262 DOI: 10.3390/proteomes6020019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 11/17/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium), an important foodborne pathogen, often encounters phosphate (Pi) shortage both in the environment and inside host cells. To gain a global view on its physiological responses to Pi starvation, we performed proteomic profiling of S. Typhimurium upon the shift from Pi-rich to Pi-low conditions. In addition to the Pho regulon, many metabolic processes were up-regulated, such as glycolysis, pentose phosphate pathway, pyrimidine degradation, glycogen, and trehalose metabolism, allowing us to chart an overview of S. Typhimurium carbon metabolism under Pi starvation. Furthermore, proteomic analysis of a mutant lacking phoB (that encodes a key regulator of Pi shortage response) suggested that only a small subset of the altered proteins upon Pi limitation was PhoB-dependent. Importantly, we present evidence that S. Typhimurium N-acetylglucosamine catabolism was induced under Pi-limiting conditions in a PhoB-dependent manner. Immunoblotting and β-galactosidase assays demonstrated that PhoB was required for the full activation of NagB, a key enzyme of this pathway, in response to low Pi. Thus, our study reveals that N-acetylglucosamine catabolism may represent an additional PhoB-regulated pathway to tackle bacterial Pi shortage.
Collapse
|
21
|
Fang SB, Huang CJ, Huang CH, Wang KC, Chang NW, Pan HY, Fang HW, Huang MT, Chen CK. speG Is Required for Intracellular Replication of Salmonella in Various Human Cells and Affects Its Polyamine Metabolism and Global Transcriptomes. Front Microbiol 2017; 8:2245. [PMID: 29187844 PMCID: PMC5694781 DOI: 10.3389/fmicb.2017.02245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/31/2017] [Indexed: 11/13/2022] Open
Abstract
The speG gene has been reported to regulate polyamine metabolism in Escherichia coli and Shigella, but its role in Salmonella remains unknown. Our preliminary studies have revealed that speG widely affects the transcriptomes of infected in vitro M and Caco-2 cells and that it is required for the intracellular replication of Salmonella enterica serovar Typhimurium (S. Typhimurium) in HeLa cells. In this study, we demonstrated that speG plays a time-dependent and cell type-independent role in the intracellular replication of S. Typhimurium. Moreover, high-performance liquid chromatography (HPLC) of four major polyamines demonstrated putrescine, spermine, and cadaverine as the leading polyamines in S. Typhimurium. The deletion of speG significantly increased the levels of the three polyamines in intracellular S. Typhimurium, suggesting the inhibitory effect of speG on the biosynthesis of these polyamines. The deletion of speG was associated with elevated levels of these polyamines in the attenuated intracellular replication of S. Typhimurium in host cells. This result was subsequently validated by the dose-dependent suppression of intracellular proliferation after the addition of the polyamines. Furthermore, our RNA transcriptome analysis of S. Typhimurium SL1344 and its speG mutant outside and inside Caco-2 cells revealed that speG regulates the genes associated with flagellar biosynthesis, fimbrial expression, and functions of types III and I secretion systems. speG also affects the expression of genes that have been rarely reported to correlate with polyamine metabolism in Salmonella, including those associated with the periplasmic nitrate reductase system, glucarate metabolism, the phosphotransferase system, cytochromes, and the succinate reductase complex in S. Typhimurium in the mid-log growth phase, as well as those in the ilv-leu and histidine biosynthesis operons of intracellular S. Typhimurium after invasion in Caco-2 cells. In the present study, we characterized the phenotypes and transcriptome effects of speG in S. Typhimurium and reviewed the relevant literature to facilitate a more comprehensive understanding of the potential role of speG in the polyamine metabolism and virulence regulation of Salmonella.
Collapse
Affiliation(s)
- Shiuh-Bin Fang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ching-Jou Huang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hung Huang
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan.,Graduate Institution of Engineering Technology-Doctoral, National Taipei University of Technology, Taipei, Taiwan
| | - Ke-Chuan Wang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nai-Wen Chang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Hung-Yin Pan
- Graduate Institution of Engineering Technology-Doctoral, National Taipei University of Technology, Taipei, Taiwan
| | - Hsu-Wei Fang
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Ming-Te Huang
- Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Kuo Chen
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
22
|
Bumann D, Schothorst J. Intracellular Salmonella metabolism. Cell Microbiol 2017; 19. [PMID: 28672057 DOI: 10.1111/cmi.12766] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 12/28/2022]
Abstract
Growth of Salmonella inside infected host cells is a key aspect of their ability to cause local enteritis or systemic disease. This growth depends on exploitation of host nutrients through a large Salmonella metabolism network with hundreds of metabolites and enzymes. Studies in cell culture infection models are unravelling more and more of the underlying molecular and cellular mechanisms but also show striking Salmonella metabolic plasticity depending on host cell line and experimental conditions. In vivo studies have revealed a qualitatively diverse, but quantitatively poor, host-Salmonella nutritional interface, which on one side makes Salmonella fitness largely resilient against metabolic perturbations, but on the other side severely limits Salmonella biomass generation and growth rates. This review discusses goals and techniques for studying Salmonella intracellular metabolism, summarises main results and implications, and proposes key issues that could be addressed in future studies.
Collapse
Affiliation(s)
- Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Joep Schothorst
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Liu Y, Liu Q, Qi L, Ding T, Wang Z, Fu J, Hu M, Li M, Song J, Liu X. Temporal Regulation of a Salmonella Typhimurium Virulence Factor by the Transcriptional Regulator YdcR. Mol Cell Proteomics 2017; 16:1683-1693. [PMID: 28674150 DOI: 10.1074/mcp.m117.068296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/08/2017] [Indexed: 11/06/2022] Open
Abstract
We previously examined Salmonella proteome within infected host cells and found differential expression of many proteins with defined functional roles such as metabolism or virulence. However, the precise roles of other altered proteins in Salmonella pathogenesis are largely unknown. A putative transcriptional regulator, YdcR, was highly induced intracellularly whereas barely expressed in vitro, implicating potential relevance to bacterial infection. To unveil its physiological functions, we exploited quantitative proteomics of intracellular Salmonella and found that genetic ablation of ydcR resulted in severe repression of SrfN, a known virulence factor. Immunoblotting, qRT-PCR, and β-galactosidase assays further demonstrate YdcR-dependent transcription and expression of srfN Moreover, we found physical interaction of YdcR with the promoter region of srfN, suggesting direct activation of its transcription. Importantly, a Salmonella mutant lacking ydcR was markedly attenuated in a mouse model of infection. Our findings reveal that YdcR temporally regulates the virulence factor SrfN during infection, thus contributing to Salmonella pathogenesis. Our work also highlights the utility of combining quantitative proteomics and bacterial genetics for uncovering the functional roles of transcription factors and likely other uncharacterized proteins as well.
Collapse
Affiliation(s)
- Yanhua Liu
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qian Liu
- §Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Linlu Qi
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tao Ding
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhen Wang
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiaqi Fu
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mo Hu
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Min Li
- §Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jeongmin Song
- ¶Department of Microbiology & Immunology, Cornell University, Ithaca, New York 14853-6401
| | - Xiaoyun Liu
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| |
Collapse
|
24
|
Qi L, Hu M, Fu J, Liu Y, Wu M, Yu K, Liu X. Quantitative proteomic analysis of host epithelial cells infected by Salmonella enterica serovar Typhimurium. Proteomics 2017; 17. [PMID: 28544771 DOI: 10.1002/pmic.201700092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/08/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022]
Abstract
Systems-level analyses have the capability to offer new insight into host-pathogen interactions on the molecular level. Using Salmonella infection of host epithelial cells as a model system, we previously analyzed intracellular bacterial proteome as a window into pathogens' adaptations to their host environment [Infect. Immun. 2015; J. Proteome Res. 2017]. Herein we extended our efforts to quantitatively examine protein expression of host cells during infection. In total, we identified more than 5000 proteins with 194 differentially regulated proteins upon bacterial infection. Notably, we found marked induction of host integrin signaling and glycolytic pathways. Intriguingly, up-regulation of host glucose metabolism concurred with increased utilization of glycolysis by intracellular Salmonella during infection. In addition to immunoblotting assays, we also verified the up-regulation of PARP1 in the host nucleus by selected reaction monitoring and immunofluorescence studies. Furthermore, we provide evidence that PARP1 elevation is likely specific to Salmonella infection and independent of one of the bacterial type III secretion systems. Our work demonstrates that unbiased high-throughput proteomics can be used as a powerful approach to provide new perspectives on host-pathogen interactions.
Collapse
Affiliation(s)
- Linlu Qi
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Mo Hu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Jiaqi Fu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Yanhua Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Mei Wu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Kaiwen Yu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|