1
|
Balan P, Chong YS, Qingsong L, Lim TK, Wong ML, Lopez V, He HG, Seneviratne CJ. Quantitative proteomics analysis identifies salivary biomarkers for early detection of pregnancy loss in a Singaporean cohort-A pilot study. Proteomics Clin Appl 2021; 15:e2000068. [PMID: 33979484 DOI: 10.1002/prca.202000068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/19/2021] [Accepted: 05/10/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE Early pregnancy loss (EPL) is one of the most common complications encountered in clinical practice. As most of EPLs occur relatively early on during pregnancy, they are often misunderstood as an expected menstrual cycle. Thus, it is essential to investigate the diagnostic biomarkers for monitoring pregnancy loss for continuous non-invasive monitoring of EPL. EXPERIMENTAL DESIGN Unstimulated saliva was collected from 10 subjects with EPL and a matched cohort of healthy pregnant women as controls. Samples were analyzed using iTRAQ analysis, and ELISA was performed to validate results. RESULTS Enrichment analysis of the 38 differentially abundant proteins identified that regulation of nucleobase, nucleoside, nucleotide, and nucleic acid metabolism was significantly affected in EPL. The nucleosome assembly pathway was significantly underrepresented in EPL and was associated with depletion of histone proteins (H2B, H3, and H4). These results were validated with ELISA experiments. A depletion of histones can impair nucleosome assembly and cause the nuclear machinery to fail. CONCLUSION Regulation of nucleosome is critical for the maintenance of genome stability and epigenetic information, lack of which may lead to pregnancy loss. Thus, assessing and monitoring salivary histone levels in patients with threatened miscarriage can be a quick and easy method of obtaining periodic diagnostic information that can speed up treatment decisions. CLINICAL RELEVANCE There is considerable uncertainty regarding the prognosis of threatened pregnancy, making it stressful for expecting mothers and healthcare professionals. Most EPLs are often misunderstood or ignored as an expected menstrual cycle. Thus it is essential to develop screenings and rapid detection devices using a medium that can be non-invasive and self-performed for continuous monitoring. Using saliva, we have identified that the nucleosome assembly gets affected in EPL with depletion of histone proteins (H2B, H3, and H4). With further verification, these findings can help saliva be utilized as a medium to determine which patients will/will not progress to miscarriage and at what point of their pregnancy. Assessing and monitoring EPL using salivary diagnostics can be a quick and easy method of obtaining periodic diagnostic information that can speed up treatment decisions. Hence, these findings need to be investigated further to improve the prediction of outcomes in women with threatened pregnancy.
Collapse
Affiliation(s)
- Preethi Balan
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center Singapore, Oral Health Academic Clinical Program, Duke NUS Medical School, Singapore
| | - Yap Seng Chong
- Department of Obstetrics and Gynecology, National University Hospital, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Lin Qingsong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Mun Loke Wong
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | - Hong-Gu He
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chaminda Jayampath Seneviratne
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center Singapore, Oral Health Academic Clinical Program, Duke NUS Medical School, Singapore
| |
Collapse
|
2
|
Balan P, Chong YS, Lin Q, Lim TK, Suriyanarayanan T, Udawatte NS, Wong ML, Lopez V, He HG, Seneviratne CJ. Salivary Proteomic Profiling Identifies Role of Neutrophil Extracellular Traps Formation in Pregnancy Gingivitis. Immunol Invest 2021; 51:103-119. [PMID: 33902370 DOI: 10.1080/08820139.2020.1810704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Pregnancy gingivitis peaks during mid-pregnancy and resolves transiently towards the postpartum period. However, the role of maternal immune response in orchestrating gingival inflammation has not yet been fully understood. Hence, in this study, we examined the salivary protein profile during the three trimesters of pregnancy, in context to pregnancy gingivitis, employing iTRAQ-based quantitative proteomics. Unstimulated saliva was collected from 10 subjects in each trimester of pregnancy and postpartum period. Samples were analysed using iTRAQ analysis and ELISA and SEM was performed to validate results. Neutrophil mediated immune response was overrepresented in all three trimesters of pregnancy, despite the decrease in phagocytic responses during the second and third trimesters. ELISA showed a significantly higher Neutrophil Extracellular Traps (NETs) formation in the third trimester of pregnancy coinciding with the resolution of pregnancy gingivitis. The NETs-associated proteins (neutrophil elastase and myeloperoxidase) showed a positive correlation with estrogen hormones, which was also highest during the third trimester. Sex hormone-driven NETs formation could be the mainstay of defence that contributes to the remission of pregnancy gingivitis. This study has provided a new insight into the role of immune-modulation in pregnancy gingivitis, which will aid development of new therapeutics for managing pregnancy gingivitis in future.
Collapse
Affiliation(s)
- Preethi Balan
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center Singapore.,Oral health Academic Clinical Program, Duke NUS Medical School, Singapore
| | - Yap Seng Chong
- Department of Obstetrics and Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Tanujaa Suriyanarayanan
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center Singapore.,Oral health Academic Clinical Program, Duke NUS Medical School, Singapore
| | - Nadeeka Shiyamalee Udawatte
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center Singapore
| | - Mun Loke Wong
- Discipline of Oral Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Violeta Lopez
- School of Nursing, Hubei University of Medicine, Shiyan, China
| | - Hong-Gu He
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chaminda Jayampath Seneviratne
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center Singapore.,Oral health Academic Clinical Program, Duke NUS Medical School, Singapore
| |
Collapse
|
3
|
Tang J, Wang Y, Li Y, Zhang Y, Zhang R, Xiao Z, Luo Y, Guo X, Tao L, Lou Y, Xue W, Zhu F. Recent Technological Advances in the Mass Spectrometry-based Nanomedicine Studies: An Insight from Nanoproteomics. Curr Pharm Des 2019; 25:1536-1553. [PMID: 31258068 DOI: 10.2174/1381612825666190618123306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 11/22/2022]
Abstract
Nanoscience becomes one of the most cutting-edge research directions in recent years since it is gradually matured from basic to applied science. Nanoparticles (NPs) and nanomaterials (NMs) play important roles in various aspects of biomedicine science, and their influences on the environment have caused a whole range of uncertainties which require extensive attention. Due to the quantitative and dynamic information provided for human proteome, mass spectrometry (MS)-based quantitative proteomic technique has been a powerful tool for nanomedicine study. In this article, recent trends of progress and development in the nanomedicine of proteomics were discussed from quantification techniques and publicly available resources or tools. First, a variety of popular protein quantification techniques including labeling and label-free strategies applied to nanomedicine studies are overviewed and systematically discussed. Then, numerous protein profiling tools for data processing and postbiological statistical analysis and publicly available data repositories for providing enrichment MS raw data information sources are also discussed.
Collapse
Affiliation(s)
- Jing Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China.,School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Yi Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Yang Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China.,School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Runyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Ziyu Xiao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Xueying Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China.,School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| |
Collapse
|
4
|
Willforss J, Chawade A, Levander F. NormalyzerDE: Online Tool for Improved Normalization of Omics Expression Data and High-Sensitivity Differential Expression Analysis. J Proteome Res 2018; 18:732-740. [DOI: 10.1021/acs.jproteome.8b00523] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | |
Collapse
|
5
|
Suriyanarayanan T, Qingsong L, Kwang LT, Mun LY, Truong T, Seneviratne CJ. Quantitative Proteomics of Strong and Weak Biofilm Formers of Enterococcus faecalis Reveals Novel Regulators of Biofilm Formation. Mol Cell Proteomics 2018; 17:643-654. [PMID: 29358339 DOI: 10.1074/mcp.ra117.000461] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/21/2017] [Indexed: 11/06/2022] Open
Abstract
Enterococcus faecalis is a bacterial pathogen associated with both endodontic and systemic infections. The biofilm formation ability of E. faecalis plays a key role in its virulence and drug resistance attributes. The formation of E. faecalis biofilms on implanted medical devices often results in treatment failure. In the present study, we report protein markers associated with the biofilm formation ability of E. faecalis using iTRAQ-based quantitative proteomics approach. In order to elucidate the biofilm-associated protein markers, we investigated the proteome of strong and weak biofilm-forming E. faecalis clinical isolates in comparison with standard American Type Culture Collection (ATCC) control strains. Comparison of E. faecalis strong and weak biofilm-forming clinical isolates with ATCC control strains showed that proteins associated with shikimate kinase pathway and sulfate transport were up-regulated in the strong biofilm former, while proteins associated with secondary metabolites, cofactor biosynthesis, and tetrahydrofolate biosynthesis were down-regulated. In the weak biofilm former, proteins associated with nucleoside and nucleotide biosynthesis were up-regulated, whereas proteins associated with sulfate and sugar transport were down-regulated. Further pathway and gene ontology analyses revealed that the major differences in biofilm formation arise from differences in metabolic activity levels of the strong and weak biofilm formers, with higher levels of metabolic activity observed in the weak biofilm former. The differences in metabolic activity could therefore be a major determinant of the biofilm ability of E. faecalis The new markers identified from this study can be further characterized in order to understand their exact role in E. faecalis biofilm formation ability. This, in turn, can lead to numerous therapeutic benefits in the treatment of this oral and systemic pathogen. The data has been deposited to the ProteomeXchange with identifier PXD006542.
Collapse
Affiliation(s)
| | - Lin Qingsong
- Department of Biological Sciences, Faculty of Science, National University of Singapore
| | - Lim Teck Kwang
- Department of Biological Sciences, Faculty of Science, National University of Singapore
| | - Lee Yew Mun
- Department of Biological Sciences, Faculty of Science, National University of Singapore
| | - Thuyen Truong
- From the Oral Sciences, Faculty of Dentistry, National University of Singapore
| | | |
Collapse
|