1
|
Kim K, Yusuf A, Sud A, Persaud N, Kirubarajan A, Moller M, Lloyd T, O’Neill B. Critical appraisal of evidence supporting prescription of psychedelics from clinic websites in Ontario, Canada. PLoS One 2024; 19:e0309911. [PMID: 39446753 PMCID: PMC11500855 DOI: 10.1371/journal.pone.0309911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/19/2024] [Indexed: 10/26/2024] Open
Abstract
Psychedelics, including ketamine, 3,4-Methyl enedioxy methamphetamine (MDMA), and psilocybin, have gained attention for their potential therapeutic role in mental health treatment. While recreational use is prohibited in Canada, medicinal exemptions can be granted. There are several psychedelic clinics in Ontario, Canada, promoting the use of psychedelics for a variety of medical indications. Our objective was to identify the indications for which psychedelics are being prescribed in Ontario clinics and assess the quality of evidence used to support these claims. Internet searches were conducted using Google and Bing to identify psychedelic clinics in Ontario. Inclusion criteria was as follow: clinics were physically located in Ontario, had a functioning website link, and demonstrated involvement of a licensed physician or nurse practitioner. Identified clinics were evaluated for their claims of effectiveness, the quality of evidence used to support these claims, and statements on psychedelic-related harms. The cited studies were appraised for quality using Oxford Centre for Evidence-Based Medicine Levels of Evidence, "level 5" being the lowest quality and "level 1" being the highest quality. Out of 200 search results, 10 psychedelic clinic websites met our inclusion criteria. These clinics advertised psychedelics for 47 medical conditions, most commonly for depression. Only 2 out of 10 clinics described potential risks associated with psychedelic use. There were 29 studies cited by these websites, majority coming from "level 4" evidence consisting of case-series and case-control studies. Overall, the cited evidence quality was low to moderate. Psychedelic clinics in Ontario promote a wide range of medical indications for psychedelics using primarily low to moderate "level 4" evidence. There is limited information shared on the potential adverse effects of psychedelics. Our study emphasizes the importance of using transparent and high-quality evidence by clinics and clinicians to ensure safe and effective use of psychedelics in mental health treatments.
Collapse
Affiliation(s)
- Kyurim Kim
- Temerty Faculty of Medicine, Undergraduate Medical Education, University of Toronto, Toronto, ON, Canada
| | - Abban Yusuf
- MAP Centre for Urban Health Solutions, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Abhimanyu Sud
- Primary Care and Population Health Systems, Humber River Hospital, North York, ON, Canada
- Temerty Faculty of Medicine, Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Nav Persaud
- MAP Centre for Urban Health Solutions, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Monique Moller
- Temerty Faculty of Medicine, Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Taryn Lloyd
- Department of Emergency Medicine, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Braden O’Neill
- MAP Centre for Urban Health Solutions, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Madrid-Gambin F, Fabregat-Safont D, Gomez-Gomez A, Olesti E, Mason NL, Ramaekers JG, Pozo OJ. Present and future of metabolic and metabolomics studies focused on classical psychedelics in humans. Biomed Pharmacother 2023; 169:115775. [PMID: 37944438 DOI: 10.1016/j.biopha.2023.115775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Psychedelics are classical hallucinogen drugs that induce a marked altered state of consciousness. In recent years, there has been renewed attention to the possible use of classical psychedelics for the treatment of certain mental health disorders. However, further investigation to better understand their biological effects in humans, their mechanism of action, and their metabolism in humans is needed when considering the development of future novel therapeutic approaches. Both metabolic and metabolomics studies may help for these purposes. On one hand, metabolic studies aim to determine the main metabolites of the drug. On the other hand, the application of metabolomics in human psychedelics studies can help to further understand the biological processes underlying the psychedelic state and the mechanisms of action underlying their therapeutic potential. This review presents the state of the art of metabolic and metabolomic studies after lysergic acid diethylamide (LSD), mescaline, N,N-dimethyltryptamine (DMT) and β-carboline alkaloids (ayahuasca brew), 5-methoxy-DMT and psilocybin administrations in humans. We first describe the characteristics of the published research. Afterward, we reviewed the main results obtained by both metabolic and metabolomics (if available) studies in classical psychedelics and we found out that metabolic and metabolomics studies in psychedelics progress at two different speeds. Thus, whereas the main metabolites for classical psychedelics have been robustly established, the main metabolic alterations induced by psychedelics need to be explored. The integration of metabolomics and pharmacokinetics for investigating the molecular interaction between psychedelics and multiple targets may open new avenues in understanding the therapeutic role of psychedelics.
Collapse
Affiliation(s)
- Francisco Madrid-Gambin
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain.
| | - David Fabregat-Safont
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain; Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071 Castelló, Spain
| | - Alex Gomez-Gomez
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain; CERBA Internacional, Chromatography Department, 08203 Sabadell, Spain
| | - Eulàlia Olesti
- Department of Clinical Pharmacology, Area Medicament, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; Clinical Pharmacology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain.
| |
Collapse
|
3
|
Chemotherapy-Induced Peripheral Neuropathy. Handb Exp Pharmacol 2023; 277:299-337. [PMID: 36253554 DOI: 10.1007/164_2022_609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect of many common anti-cancer agents that can lead to dose reduction or treatment discontinuation, which decrease chemotherapy efficacy. Long-term CIPN can interfere with activities of daily living and diminish the quality of life. The mechanism of CIPN is not yet fully understood, and biomarkers are needed to identify patients at high risk and potential treatment targets. Metabolomics can capture the complex behavioral and pathophysiological processes involved in CIPN. This chapter is to review the CIPN metabolomics studies to find metabolic pathways potentially involved in CIPN. These potential CIPN metabolites are then investigated to determine whether there is evidence from studies of other neuropathy etiologies such as diabetic neuropathy and Leber hereditary optic neuropathy to support the importance of these pathways in peripheral neuropathy. Six potential biomarkers and their putative mechanisms in peripheral neuropathy were reviewed. Among these biomarkers, histidine and phenylalanine have clear roles in neurotransmission or neuroinflammation in peripheral neuropathy. Further research is needed to discover and validate CIPN metabolomics biomarkers in large clinical studies.
Collapse
|
4
|
Wille SMR, Elliott S. The Future of Analytical and Interpretative Toxicology: Where are We Going and How Do We Get There? J Anal Toxicol 2021; 45:619-632. [PMID: 33245325 DOI: 10.1093/jat/bkaa133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/02/2020] [Accepted: 11/18/2020] [Indexed: 01/26/2023] Open
Abstract
(Forensic) toxicology has faced many challenges, both analytically and interpretatively, especially in relation to an increase in potential drugs of interest. Analytical toxicology and its application to medicine and forensic science have progressed rapidly within the past centuries. Technological innovations have enabled detection of more substances with increasing sensitivity in a variety of matrices. Our understanding of the effects (both intended and unintended) have also increased along with determination and degree of toxicity. However, it is clear there is even more to understand and consider. The analytical focus has been on typical matrices such as blood and urine but other matrices could further increase our understanding, especially in postmortem (PM) situations. Within this context, the role of PM changes and potential redistribution of drugs requires further research and identification of markers of its occurrence and extent. Whilst instrumentation has improved, in the future, nanotechnology may play a role in selective and sensitive analysis as well as bioassays. Toxicologists often only have an advisory impact on pre-analytical and pre-interpretative considerations. The collection of appropriate samples at the right time in an appropriate way as well as obtaining sufficient circumstance background is paramount in ensuring an effective analytical strategy to provide useful results that can be interpreted within context. Nevertheless, key interpretative considerations such as pharmacogenomics and drug-drug interactions as well as determination of tolerance remain and in the future, analytical confirmation of an individual's metabolic profile may support a personalized medicine and judicial approach. This should be supported by the compilation and appropriate application of drug data pursuant to the situation. Specifically, in PM circumstances, data pertaining to where a drug was not/may have been/was contributory will be beneficial with associated pathological considerations. This article describes the challenges faced within toxicology and discusses progress to a future where they are being addressed.
Collapse
Affiliation(s)
- Sarah M R Wille
- Department of Toxicology, National Institute for Criminalistics and Criminology, Brussels, Belgium
| | - Simon Elliott
- Elliott Forensic Consulting Ltd, Birmingham, UK.,Department Analytical, Environmental & Forensic Science, King's College London, London, UK
| |
Collapse
|
5
|
Morales-Puerto N, Giménez-Gómez P, Pérez-Hernández M, Abuin-Martínez C, Gil de Biedma-Elduayen L, Vidal R, Gutiérrez-López MD, O'Shea E, Colado MI. Addiction and the kynurenine pathway: A new dancing couple? Pharmacol Ther 2021; 223:107807. [PMID: 33476641 DOI: 10.1016/j.pharmthera.2021.107807] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Drug use poses a serious threat to health systems throughout the world and the number of consumers rises relentlessly every year. The kynurenine pathway, main pathway of tryptophan degradation, has drawn interest in this field due to its relationship with addictive behaviour. Recently it has been confirmed that modulation of kynurenine metabolism at certain stages of the pathway can reduce, prevent or abolish drug seeking-like behaviours in studies with several different drugs. In this review, we present an up-to-date summary of the evidences of a relationship between drug use and the kynurenine pathway, both the alterations of the pathway due to drug use as well as modulation of the pathway as a potential approach to treat drug addiction. The review discusses ethanol, nicotine, cannabis, amphetamines, cocaine and opioids and new prospects in the drug research field are proposed.
Collapse
Affiliation(s)
- Nuria Morales-Puerto
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Pablo Giménez-Gómez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Mercedes Pérez-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Cristina Abuin-Martínez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Leticia Gil de Biedma-Elduayen
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Rebeca Vidal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - María Dolores Gutiérrez-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Esther O'Shea
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain.
| | - María Isabel Colado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
6
|
Comparative Untargeted Metabolomics Analysis of the Psychostimulants 3,4-Methylenedioxy-Methamphetamine (MDMA), Amphetamine, and the Novel Psychoactive Substance Mephedrone after Controlled Drug Administration to Humans. Metabolites 2020; 10:metabo10080306. [PMID: 32726975 PMCID: PMC7465486 DOI: 10.3390/metabo10080306] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 12/29/2022] Open
Abstract
Psychoactive stimulants are a popular drug class which are used recreationally. Over the last decade, large numbers of new psychoactive substances (NPS) have entered the drug market and these pose a worldwide problem to human health. Metabolomics approaches are useful tools for simultaneous detection of endogenous metabolites affected by drug use. They allow identification of pathways or characteristic metabolites, which might support the understanding of pharmacological actions or act as indirect biomarkers of consumption behavior or analytical detectability. Herein, we performed a comparative metabolic profiling of three psychoactive stimulant drugs 3,4-methylenedioxymethamphetamine (MDMA), amphetamine and the NPS mephedrone by liquid chromatography-high resolution mass spectrometry (LC-HRMS) in order to identify common pathways or compounds. Plasma samples were obtained from controlled administration studies to humans. Various metabolites were identified as increased or decreased based on drug intake, mainly belonging to energy metabolism, steroid biosynthesis and amino acids. Linoleic acid and pregnenolone-sulfate changed similarly in response to intake of all drugs. Overall, mephedrone produced a profile more similar to that of amphetamine than MDMA in terms of affected energy metabolism. These data can provide the basis for further in-depth targeted metabolome studies on pharmacological actions and search for biomarkers of drug use.
Collapse
|
7
|
Zhao X, Niu L, Clerici C, Russo R, Byrd M, Setchell KD. Data analysis of MS-based clinical lipidomics studies with crossover design: A tutorial mini-review of statistical methods. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2019; 13:5-17. [PMID: 34841080 PMCID: PMC8620525 DOI: 10.1016/j.clinms.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/28/2022]
Abstract
Clinical lipidomics using mass spectrometry (MS) is important to support discovery of biomarkers for diagnosis and understanding the pathophysiology of diseases. Frequently, lipidomics data from clinical studies have large variations among individuals because the human metabolome/lipidome is strongly influenced by genotype, daily activity, diet and gut flora. This inter-personal variability makes data analysis more complex and normally requires a large cohort for robust statistical analysis. Crossover designed experiments treat each subject as his or her own control, thereby reducing the between-subject variability, such that the effects of exposure/treatment are more likely to be identified when using a relatively small number of subjects. This design repeatedly samples an individual when crossing over from one treatment/exposure to another during the course of the study. The acquired datasets have a distinct data structure resulting from repeated longitudinal measurements. A variety of statistical methods are used in published crossover studies, but many appear to ignore the data structure inherent in the experimental design. An appropriate data analysis approach is critical to discovering robust clinical biomarkers. Hereby, we summarize the statistical methodologies suitable for clinical lipidomics studies using crossover design. To help understand and apply these methods to practical cases, we focused on the general concepts of statistical models in the context of analysis of metabolomics data without spending too much effort on mathematical details. Importantly, we aim to evaluate these methods and provide suggestions for data analysis and biomarker discovery. We applied the discussed methods on a MS-based lipidomics dataset from a double-blind random crossover designed clinical dietary intervention study. The strength and potential pitfalls of each method are briefly discussed and a suggestion for analytic workflow proposed.
Collapse
Affiliation(s)
- Xueheng Zhao
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Liang Niu
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Carlo Clerici
- Clinica Di Gastroenterologia – Endoscopia – Epatologia, Policlinico, S. Maria Della Misericordia Azienda Ospedaliera Di Perugia, Italy
| | - Roberta Russo
- Clinica Di Gastroenterologia – Endoscopia – Epatologia, Policlinico, S. Maria Della Misericordia Azienda Ospedaliera Di Perugia, Italy
| | - Melissa Byrd
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kenneth D.R. Setchell
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
8
|
(Un)targeted hair metabolomics: first considerations and systematic evaluation on the impact of sample preparation. Anal Bioanal Chem 2019; 411:3963-3977. [DOI: 10.1007/s00216-019-01873-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 12/31/2022]
|
9
|
Steuer AE, Brockbals L, Kraemer T. Metabolomic Strategies in Biomarker Research-New Approach for Indirect Identification of Drug Consumption and Sample Manipulation in Clinical and Forensic Toxicology? Front Chem 2019; 7:319. [PMID: 31134189 PMCID: PMC6523029 DOI: 10.3389/fchem.2019.00319] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
Drug of abuse (DOA) consumption is a growing problem worldwide, particularly with increasing numbers of new psychoactive substances (NPS) entering the drug market. Generally, little information on their adverse effects and toxicity are available. The direct detection and identification of NPS is an analytical challenge due to their ephemerality on the drug scene. An approach that does not directly focus on the structural detection of an analyte or its metabolites, would be beneficial for this complex analytical scenario and the development of alternative screening methods could help to provide fast response on suspected NPS consumption. A metabolomics approach might represent such an alternative strategy for the identification of biomarkers for different questions in DOA testing. Metabolomics is the monitoring of changes in small (endogenous) molecules (<1,000 Da) in response to a certain stimulus, e.g., DOA consumption. For this review, a literature search targeting "metabolomics" and different DOAs or NPS was conducted. Thereby, different applications of metabolomic strategies in biomarker research for DOA identification were identified: (a) as an additional tool for metabolism studies bearing the major advantage that particularly a priori unknown or unexpected metabolites can be identified; and (b) for identification of endogenous biomarker or metabolite patterns, e.g., for synthetic cannabinoids or also to indirectly detect urine manipulation attempts by chemical adulteration or replacement with artificial urine samples. The majority of the currently available literature in that field, however, deals with metabolomic studies for DOAs to better assess their acute or chronic effects or to find biomarkers for drug addiction and tolerance. Certain changes in endogenous compounds are detected for all studied DOAs, but often similar compounds/pathways are influenced. When evaluating these studies with regard to possible biomarkers for drug consumption, the observed changes appear, albeit statistically significant, too small to reliably work as biomarker for drug consumption. Further, different drugs were shown to affect the same pathways. In conclusion, metabolomic approaches possess potential for detection of biomarkers indicating drug consumption. More studies, including more sensitive targeted analyses, multi-variant statistical models or deep-learning approaches are needed to fully explore the potential of omics science in DOA testing.
Collapse
Affiliation(s)
- Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Lana Brockbals
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Abstract
BACKGROUND For a number of mental health disorders, including posttraumatic stress disorders (PTSD), there are not many available treatment options. Recently, there has been renewed interest in the potential of methylenedioxymethamphetamine (MDMA) to restore function for patients with these disorders. The primary hypothesis is that MDMA, via prosocial effects, increases the ability of patients to address the underlying psychopathology of the disorder. However, the use of MDMA poses potential problems of neurotoxicity, in addition to its own potential for misuse. METHODS In this article, the proposed potential of MDMA as an adjunct to psychotherapy for PTSD is evaluated. The rationale for the use of MDMA and the positive results of studies that have administered MDMA in the treatment of PTSD are provided (pros). A description of potential adverse effects of treatment is also presented (cons). An overview of MDMA pharmacology and pharmacokinetics and a description of potential adverse effects of treatments are also presented. Methylenedioxymethamphetamine-produced oxytocin release and decreased expression of fear conditioning as well as one of the MDMA enantiomers (the n R- entaniomer) are suggested as potential mechanisms for the beneficial effects of MDMA in PTSD (suggestions). RESULTS There is some evidence that MDMA facilitates recovery of PTSD. However, the significant adverse effects of MDMA raise concern for its adoption as a pharmacotherapy. Alternative potential treatments with less adverse effects and that are based on the ubiquitous pharmacology of MDMA are presented. CONCLUSIONS We suggest that additional research investigating the basis for the putative beneficial effects of MDMA might reveal an effective treatment with fewer adverse effects. Suggestions of alternative treatments based on the behavioral pharmacology and toxicology of MDMA and its enantiomers are presented.
Collapse
|
11
|
Boxler MI, Schneider TD, Kraemer T, Steuer AE. Analytical considerations for (un)-targeted metabolomic studies with special focus on forensic applications. Drug Test Anal 2018; 11:678-696. [PMID: 30408838 DOI: 10.1002/dta.2540] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Abstract
Over the past few years, the interest in metabolomics has increased in various fields including forensic toxicology. Forensic analysis typically requires a high degree of accuracy, which is often a problem in metabolomics applications. We aimed for a systematic evaluation of different analytical considerations of a metabolomics workflow allowing a targeted approach within an untargeted setup. Samples with 69 metabolites from different chemical classes were qualitatively and quantitatively analyzed on a high resolution quadrupole time of flight mass spectrometer coupled to liquid chromatography (UHPLC-QTOF). Three issues were addressed: (a) Two different approaches on "blind matrix" a simulated body fluid (SBF) and plasma-filtrate, were tested for calibration samples; (b) comparison of two different HPLC columns, reverse-phase (RP) and hydrophilic interaction chromatography (HILIC); and (c) comparison of three different acquisition modes (TOF-MS, information dependent data acquisition (IDA), and sequential window acquisition of all theoretical fragment-ion spectra (SWATH). Samples were measured repeatedly for method comparison based on sensitivity, accuracy, precision, and detection robustness. The blind matrices showed similar accuracy for most analytes, while SBF provided an easier preparation with satisfying results. To cover a wide part of the human metabolome, a combination of RP and HILIC showed the best results. The different scan modes performed equally regarding metabolite quantification while TOF-MS was more sensitive but lacked MS/MS spectra generation. IDA and SWATH files were aligned to various databases where IDA showed good MS/MS spectra matches. SWATH seemed to be beneficial in detection rate but was incompatible with many important software tools in metabolomics.
Collapse
Affiliation(s)
- Martina I Boxler
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Tom D Schneider
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Andrea E Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| |
Collapse
|
12
|
GC-MS metabolomics reveals disturbed metabolic pathways in primary mouse hepatocytes exposed to subtoxic levels of 3,4-methylenedioxymethamphetamine (MDMA). Arch Toxicol 2018; 92:3307-3323. [PMID: 30255327 DOI: 10.1007/s00204-018-2314-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/19/2018] [Indexed: 12/23/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a well-known hepatotoxic drug. Although its toxicity has been thoroughly studied at high concentrations, there is still insufficient knowledge on possible alterations of cell function at subtoxic concentrations, which are in fact more representative concentrations of intoxication scenarios. In this study, a gas chromatography-mass spectrometry (GC-MS) metabolomics approach was used to investigate the metabolic changes in primary mouse hepatocytes (PMH) exposed to two subtoxic concentrations of MDMA (LC01 and LC10) for 24 h. Metabolomic profiling of both intracellular metabolites and volatile metabolites in the extracellular medium of PMH was performed. Multivariate analysis showed that the metabolic pattern of cells exposed to MDMA discriminates from the controls in a concentration-dependent manner. Exposure to LC10 MDMA induces a significant increase in some intracellular metabolites, including oleic acid and palmitic acid, and a decrease in glutamate, aspartate, 5-oxoproline, fumarate, malate, phosphoric acid, α-ketoglutarate and citrate. Extracellular metabolites such as acetophenone, formaldehyde, pivalic acid, glyoxal and 2-butanone were found significantly increased after exposure to MDMA, compared to controls, whereas 4-methylheptane, 2,4-dimethyl-1-heptene, nonanal, among others, were found significantly decreased. The panel of discriminatory metabolites is mainly involved in tricarboxylic acid (TCA) cycle, fatty acid metabolism, glutamate metabolism, antioxidant defenses and possibly changes in the liver enzyme machinery. Overall, these results highlight the potential of the intra- and extracellular metabolome to study alterations triggered by subtoxic concentrations of MDMA in hepatic cell functions, which represents a more realistic appraisal of early toxicity events posed by exposure to this drug. In addition, these results also revealed some metabolites that may be used as potential biomarkers indicative of early events in the hepatotoxicity induced by MDMA.
Collapse
|
13
|
Boxler MI, Streun GL, Liechti ME, Schmid Y, Kraemer T, Steuer AE. Human Metabolome Changes after a Single Dose of 3,4-Methylenedioxymethamphetamine (MDMA) with Special Focus on Steroid Metabolism and Inflammation Processes. J Proteome Res 2018; 17:2900-2907. [PMID: 29947220 DOI: 10.1021/acs.jproteome.8b00438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The intake of 3,4-methylenedioxymethamphetamine (MDMA) is known to increase several endogenous substances involved in steroid and inflammation pathways. Untargeted metabolomics screening approaches can determine biochemical changes after drug exposure and can reveal new pathways, which might be involved in the pharmacology and toxicology of a drug of abuse. We analyzed plasma samples from a placebo-controlled crossover study of a single intake of MDMA. Plasma samples from a time point before and three time points after the intake of a single dose of 125 mg MDMA were screened for changes of endogenous metabolites. An untargeted metabolomics approach on a high-resolution quadrupole time-of-flight mass spectrometer coupled to liquid chromatography with two different chromatographic systems (reversed-phase and hydrophobic interaction liquid chromatography) was applied. Over 10 000 features of the human metabolome were detected. Hence, 28 metabolites were identified, which showed significant changes after administration of MDMA compared with placebo. The analysis revealed an upregulation of cortisol and pregnenolone sulfate 4 h after MDMA intake, suggesting increased stress and serotonergic activity. Furthermore, calcitriol levels were decreased after the intake of MDMA. Calcitriol is involved in the upregulation of trophic factors, which have protective effects on brain dopamine neurons. The inflammation mediators hydroxyeicosatetraenoic acid, dihydroxyeicosatetraenoic acid, and octadecadienoic acid were found to be upregulated after the intake of MDMA compared with placebo, which suggested a stimulation of inflammation pathways.
Collapse
Affiliation(s)
- Martina I Boxler
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine , University of Zurich , 8057 Zurich , Switzerland
| | - Gabriel L Streun
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine , University of Zurich , 8057 Zurich , Switzerland
| | - Matthias E Liechti
- Psychopharmacology Research, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, Department of Clinical Research , University Hospital Basel, University of Basel , 4031 Basel , Switzerland
| | - Yasmin Schmid
- Psychopharmacology Research, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, Department of Clinical Research , University Hospital Basel, University of Basel , 4031 Basel , Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine , University of Zurich , 8057 Zurich , Switzerland
| | - Andrea E Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine , University of Zurich , 8057 Zurich , Switzerland
| |
Collapse
|