1
|
McFarland MR, Kulathu Y. Emerging tools and methods to study cell signalling mediated by branched ubiquitin chains. Biochem Soc Trans 2025:BST20253015. [PMID: 40380883 DOI: 10.1042/bst20253015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/30/2025] [Indexed: 05/19/2025]
Abstract
Branched ubiquitin chains are complex molecular structures in which two or more ubiquitin moieties are attached to distinct lysine residues of a single ubiquitin molecule within a polyubiquitin chain. These bifurcated architectures significantly expand the signalling capacity of the ubiquitin system. Although branched chains constitute a substantial fraction of cellular polyubiquitin, their biological functions largely remain enigmatic due to their complex nature and the associated technical challenges of studying them. Recent technological innovations have enabled the identification of key molecular players and revealed essential roles for branched chains in diverse cellular processes. In this review, we discuss the bespoke strategies that have driven these discoveries, as well as the technologies needed to advance this rapidly evolving field.
Collapse
Affiliation(s)
- Matthew R McFarland
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, U.K
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, U.K
| |
Collapse
|
2
|
Bailey AO, Durbin KR, Robey MT, Palmer LK, Russell WK. Filling the gaps in peptide maps with a platform assay for top-down characterization of purified protein samples. Proteomics 2024; 24:e2400036. [PMID: 39004851 DOI: 10.1002/pmic.202400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) intact mass analysis and LC-MS/MS peptide mapping are decisional assays for developing biological drugs and other commercial protein products. Certain PTM types, such as truncation and oxidation, increase the difficulty of precise proteoform characterization owing to inherent limitations in peptide and intact protein analyses. Top-down MS (TDMS) can resolve this ambiguity via fragmentation of specific proteoforms. We leveraged the strengths of flow-programmed (fp) denaturing online buffer exchange (dOBE) chromatography, including robust automation, relatively high ESI sensitivity, and long MS/MS window time, to support a TDMS platform for industrial protein characterization. We tested data-dependent (DDA) and targeted strategies using 14 different MS/MS scan types featuring combinations of collisional- and electron-based fragmentation as well as proton transfer charge reduction. This large, focused dataset was processed using a new software platform, named TDAcquireX, that improves proteoform characterization through TDMS data aggregation. A DDA-based workflow provided objective identification of αLac truncation proteoforms with a two-termini clipping search. A targeted TDMS workflow facilitated the characterization of αLac oxidation positional isomers. This strategy relied on using sliding window-based fragment ion deconvolution to generate composite proteoform spectral match (cPrSM) results amenable to fragment noise filtering, which is a fundamental enhancement relevant to TDMS applications generally.
Collapse
Affiliation(s)
- Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | - Lee K Palmer
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
3
|
P T B, Sahu I. Decoding the ubiquitin landscape by cutting-edge ubiquitinomic approaches. Biochem Soc Trans 2024; 52:627-637. [PMID: 38572966 DOI: 10.1042/bst20230457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Functional consequences of protein ubiquitination have gone far beyond the degradation regulation as was initially imagined during its discovery 40 years back. The state-of-the-art has revealed the plethora of signaling pathways that are largely regulated by ubiquitination process in eukaryotes. To no surprise, ubiquitination is often dysregulated in many human diseases, including cancer, neurodegeneration and infection. Hence it has become a major focus with high-gain research value for many investigators to unravel new proteoforms, that are the targets of this ubiquitination modification. Despite many biochemical or proteomic approaches available for ubiquitination detection, mass-spectrometry stood out to be the most efficient and transformative technology to read this complex modification script. Here in this review, we have discussed how different ubiquitin codes can be decoded qualitatively and quantitatively following various sequential proteomic approaches to date reported and indicated the current limitations with scope for improvements.
Collapse
Affiliation(s)
- Brindhavanam P T
- Division of Medical Research, SRM-Medical College Hospital and Research Centre, Faculty of Medical and Health Sciences, SRMIST, Kattankulathur, Tamil Nadu, India
| | - Indrajit Sahu
- Division of Medical Research, SRM-Medical College Hospital and Research Centre, Faculty of Medical and Health Sciences, SRMIST, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
4
|
Bashyal A, Dunham SD, Brodbelt JS. Characterization of Unbranched Ubiquitin Tetramers by Combining Ultraviolet Photodissociation with Proton Transfer Charge Reduction Reactions. Anal Chem 2023; 95:14001-14008. [PMID: 37677053 DOI: 10.1021/acs.analchem.3c02618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Polyubiquitination is an important post-translational modification (PTM) that regulates various biological functions. The linkage sites and topologies of polyubiquitination chains are important factors in determining the fate of polyubiquitinated proteins. Characterization of polyubiquitin chains is the first step in understanding the biological functions of protein ubiquitination, but it is challenging owing to the repeating nature of the ubiquitin chains and the difficulty in deciphering linkage positions. Here, we combine ultraviolet photodissociation (UVPD) mass spectrometry and gas-phase proton transfer charge reduction (PTCR) to facilitate the assignment of product ions generated from Lys6-, Lys11-, Lys29-, Lys33-, Lys48-, and Lys63-linked ubiquitin tetramers. UVPD results in extensive fragmentation of intact proteins in a manner that allows the localization of PTMs. However, UVPD mass spectra of large proteins (>30 kDa) are often congested due to the overlapping isotopic distribution of highly charged fragment ions. UVPD + PTCR improved the identification of PTM-containing fragment ions, allowing the localization of linkage sites in all six tetramers analyzed. UVPD + PTCR also increased the sequence coverage obtained from the PTM-containing fragment ions in each of the four chains of each tetramer by 7 to 44% when compared to UVPD alone.
Collapse
Affiliation(s)
- Aarti Bashyal
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sean D Dunham
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Sahu I, Zhu H, Buhrlage SJ, Marto JA. Proteomic approaches to study ubiquitinomics. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194940. [PMID: 37121501 PMCID: PMC10612121 DOI: 10.1016/j.bbagrm.2023.194940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
As originally described some 40 years ago, protein ubiquitination was thought to serve primarily as a static mark for protein degradation. In the ensuing years, it has become clear that 'ubiquitination' is a structurally diverse and dynamic post-translational modification and is intricately involved in a myriad of signaling pathways in all eukaryote cells. And like other key pathways in the functional proteome, ubiquitin signaling is often disrupted, sometimes severely so, in human pathophysiology. As a result of its central role in normal physiology and human disease, the ubiquitination field is now represented across the full landscape of biomedical research from fundamental structural and biochemical studies to translational and clinical research. In recent years, mass spectrometry has emerged as a powerful technology for the detection and characterization of protein ubiquitination. Herein we detail qualitative and quantitative proteomic methods using a compare/contrast approach to highlight their strengths and weaknesses.
Collapse
Affiliation(s)
- Indrajit Sahu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - He Zhu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Center for Emergent Drug Targets, USA.
| | - Jarrod A Marto
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA; Center for Emergent Drug Targets, USA.
| |
Collapse
|
6
|
Shestoperova EI, Ivanov DG, Strieter ER. Quantitative Analysis of Diubiquitin Isomers Using Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:931-938. [PMID: 37014729 DOI: 10.1021/jasms.3c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The diversity of ubiquitin modifications calls for methods to better characterize ubiquitin chain linkage, length, and morphology. Here, we use multiple linear regression analysis coupled with ion mobility mass spectrometry (IM-MS) to quantify the relative abundance of different ubiquitin dimer isomers. We demonstrate the utility and robustness of this approach by quantifying the relative abundance of different ubiquitin dimers in complex mixtures and comparing the results to the standard, bottom-up ubiquitin AQUA method. Our results provide a foundation for using multiple linear regression analysis and IM-MS to characterize more complex ubiquitin chain architectures.
Collapse
Affiliation(s)
- Elizaveta I Shestoperova
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Daniil G Ivanov
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Molecular & Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
7
|
Yu J, Hou B, Huang Y, Wang X, Qian Y, Liang Y, Gu X, Ma Z, Sun Y. USP48 alleviates bone cancer pain and regulates MrgC stabilization in spinal cord neurons of male mice. Eur J Pain 2023. [PMID: 36864656 DOI: 10.1002/ejp.2102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND Ubiquitin-mediated degradation of the Mas-related G protein-coupled receptor C (MrgC) reduces the number of receptors. However, the specific deubiquitinating enzyme antagonize this process has not been reported. In this study, we investigated the effect of ubiquitin-specific protease-48 (USP48) on bone cancer pain (BCP) and its effect on MrgC. METHODS A mouse model of BCP was established. BCP behaviours of mice were assessed after intrathecal injection of adeno-associated virus (AAV)-USP48. USP48 and MrgC interactions were studied by immunoprecipitation. Overexpression and knockdown of USP48 were conducted in N2a cells to investigate the effect of USP48 on MrgC receptor number and ubiquitination. RESULTS Spinal cord level USP48 expression was reduced in mice with BCP. Intrathecal injection of AAV-USP48 increased paw withdrawal mechanical threshold and reduced spontaneous flinching in mice. In N2a cells, there were increased number of MrgC receptors after overexpression of USP48 and decreased number of MrgC receptors after knockdown of USP48. USP48 interacted with MrgC and overexpression of USP48 altered the level of ubiquitination of MrgC. CONCLUSION USP48 antagonizes ubiquitin-mediated autophagic degradation of MrgC and alleviates BCP in a murine animal model. Our findings may provide a new perspective for the treatment of BCP. SIGNIFICANCE Our finding may provide an important theoretical basis as well as an intervention target for clinical development of drugs for BCP.
Collapse
Affiliation(s)
- Jiacheng Yu
- Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Bailing Hou
- Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yulin Huang
- Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiaoyu Wang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yue Qian
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ying Liang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhengliang Ma
- Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yue Sun
- Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Waltho A, Sommer T. Getting to the Root of Branched Ubiquitin Chains: A Review of Current Methods and Functions. Methods Mol Biol 2023; 2602:19-38. [PMID: 36446964 DOI: 10.1007/978-1-0716-2859-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nearly 20 years since the first branched ubiquitin (Ub) chains were identified by mass spectrometry, our understanding of these chains and their function is still evolving. This is due to the limitations of classical Ub research techniques in identifying these chains and the vast complexity of potential branched chains. Considering only lysine or N-terminal methionine attachment sites, there are already 28 different possible branch points. Taking into account recently discovered ester-linked ubiquitination, branch points of more than two linkage types, and the higher-order chain structures within which branch points exist, the diversity of branched chains is nearly infinite. This review breaks down the complexity of these chains into their general functions, what we know so far about the different linkage combinations, branched chain-optimized methodologies, and the future perspectives of branched chain research.
Collapse
Affiliation(s)
- Anita Waltho
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Thomas Sommer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Sun M, Zhang X. Current methodologies in protein ubiquitination characterization: from ubiquitinated protein to ubiquitin chain architecture. Cell Biosci 2022; 12:126. [PMID: 35962460 PMCID: PMC9373315 DOI: 10.1186/s13578-022-00870-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Ubiquitination is a versatile post-translational modification (PTM), which regulates diverse fundamental features of protein substrates, including stability, activity, and localization. Unsurprisingly, dysregulation of the complex interaction between ubiquitination and deubiquitination leads to many pathologies, such as cancer and neurodegenerative diseases. The versatility of ubiquitination is a result of the complexity of ubiquitin (Ub) conjugates, ranging from a single Ub monomer to Ub polymers with different length and linkage types. To further understand the molecular mechanism of ubiquitination signaling, innovative strategies are needed to characterize the ubiquitination sites, the linkage type, and the length of Ub chain. With advances in chemical biology tools, computational methodologies, and mass spectrometry, protein ubiquitination sites and their Ub chain architecture have been extensively revealed. The obtained information on protein ubiquitination helps to crack the molecular mechanism of ubiquitination in numerous pathologies. In this review, we summarize the recent advances in protein ubiquitination analysis to gain updated knowledge in this field. In addition, the current and future challenges and barriers are also reviewed and discussed.
Collapse
|
10
|
Assembly and function of branched ubiquitin chains. Trends Biochem Sci 2022; 47:759-771. [DOI: 10.1016/j.tibs.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
|
11
|
Foster B, Attwood M, Gibbs-Seymour I. Tools for Decoding Ubiquitin Signaling in DNA Repair. Front Cell Dev Biol 2021; 9:760226. [PMID: 34950659 PMCID: PMC8690248 DOI: 10.3389/fcell.2021.760226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
The maintenance of genome stability requires dedicated DNA repair processes and pathways that are essential for the faithful duplication and propagation of chromosomes. These DNA repair mechanisms counteract the potentially deleterious impact of the frequent genotoxic challenges faced by cells from both exogenous and endogenous agents. Intrinsic to these mechanisms, cells have an arsenal of protein factors that can be utilised to promote repair processes in response to DNA lesions. Orchestration of the protein factors within the various cellular DNA repair pathways is performed, in part, by post-translational modifications, such as phosphorylation, ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs). In this review, we firstly explore recent advances in the tools for identifying factors involved in both DNA repair and ubiquitin signaling pathways. We then expand on this by evaluating the growing repertoire of proteomic, biochemical and structural techniques available to further understand the mechanistic basis by which these complex modifications regulate DNA repair. Together, we provide a snapshot of the range of methods now available to investigate and decode how ubiquitin signaling can promote DNA repair and maintain genome stability in mammalian cells.
Collapse
Affiliation(s)
| | | | - Ian Gibbs-Seymour
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Deol KK, Strieter ER. The ubiquitin proteoform problem. Curr Opin Chem Biol 2021; 63:95-104. [PMID: 33813043 PMCID: PMC8384647 DOI: 10.1016/j.cbpa.2021.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022]
Abstract
The diversity of ubiquitin modifications is immense. A protein can be monoubiquitylated, multi-monoubiquitylated, and polyubiquitylated with chains varying in size and shape. Ubiquitin itself can be adorned with other ubiquitin-like proteins and smaller functional groups. Considering different combinations of post-translational modifications can give rise to distinct biological outcomes, characterizing ubiquitylated proteoforms of a given protein is paramount. In this Opinion, we review recent advances in detecting and quantifying various ubiquitin proteoforms using mass spectrometry.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
13
|
Abstract
Ubiquitylation is a critical post-translational modification that controls a wide variety of processes in eukaryotes. Ubiquitin chains of different topologies are specialized for different cellular functions and control the stability, activity, interaction properties, and localization of many different proteins. Recent work has highlighted a role for branched ubiquitin chains in the regulation of cell signaling and protein degradation pathways. Similar to their unbranched counterparts, branched ubiquitin chains are remarkably diverse in terms of their chemical linkages, structures, and the biological information they transmit. In this review, we discuss emerging themes related to the architecture, synthesis, and functions of branched ubiquitin chains. We also describe methodologies that have recently been developed to identify and decode the functions of these branched polymers.
Collapse
|
14
|
Berruti G. Destruction or Reconstruction: A Subtle Liaison between the Proteolytic and Signaling Role of Protein Ubiquitination in Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:215-240. [PMID: 34453739 DOI: 10.1007/978-3-030-77779-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ubiquitination is one of the most diverse forms of protein post-translational modification that changes the function of the landscape of substrate proteins in response to stimuli, without the need for "de novo" protein synthesis. Ubiquitination is involved in almost all aspects of eukaryotic cell biology, from the best-studied role in promoting the removal of faulty or unnecessary proteins by the way of the ubiquitin proteasome system and autophagy-lysosome pathway to the recruitment of proteins in specific non-proteolytic signaling pathways, as emerged by the more recent discoveries about the protein signature with peculiar types of ubiquitin chains. Spermatogenesis, on its own, is a complex cellular developmental process in which mitosis, meiosis, and cell differentiation coexist so to result in the continuous formation of haploid spermatozoa. Successful spermatogenesis is thus at the same time a mixed result of the precise expression and correct intracellular destination of structural proteins and enzymes, from one hand, and the fine removal by targeted degradation of unfolded or damaged proteins as well as of obsolete, outlived proteins, from the other hand. In this minireview, I will focus on the importance of the ubiquitin system all over the spermatogenic process, discussing both proteolytic and non-proteolytic functions of protein ubiquitination. Alterations in the ubiquitin system have been in fact implicated in pathologies leading to male infertility. Notwithstanding several aspects of the multifaceted world of the ubiquitin system have been clarified, the physiological meaning of the so-called ubiquitin code remains still partially elusive. The studies reviewed in this chapter provide information that could aid the investigators to pursue new promising discoveries in the understanding of human and animal reproductive potential.
Collapse
|
15
|
Wang YS, Wu KP, Jiang HK, Kurkute P, Chen RH. Branched Ubiquitination: Detection Methods, Biological Functions and Chemical Synthesis. Molecules 2020; 25:E5200. [PMID: 33182242 PMCID: PMC7664869 DOI: 10.3390/molecules25215200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 11/16/2022] Open
Abstract
Ubiquitination is a versatile posttranslational modification that elicits signaling roles to impact on various cellular processes and disease states. The versatility is a result of the complexity of ubiquitin conjugates, ranging from a single ubiquitin monomer to polymers with different length and linkage types. Recent studies have revealed the abundant existence of branched ubiquitin chains in which one ubiquitin molecule is connected to two or more ubiquitin moieties in the same ubiquitin polymer. Compared to the homotypic ubiquitin chain, the branched chain is recognized or processed differently by readers and erasers of the ubiquitin system, respectively, resulting in a qualitative or quantitative alteration of the functional output. Furthermore, certain types of branched ubiquitination are induced by cellular stresses, implicating their important physiological role in stress adaption. In addition, the current chemical methodologies of solid phase peptide synthesis and expanding genetic code approach have been developed to synthesize different architectures of branched ubiquitin chains. The synthesized branched ubiquitin chains have shown their significance in understanding the topologies and binding partners of the branched chains. Here, we discuss the recent progresses on the detection, functional characterization and synthesis of branched ubiquitin chains as well as the future perspectives of this emerging field.
Collapse
Affiliation(s)
- Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (H.-K.J.); (P.K.)
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (H.-K.J.); (P.K.)
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Han-Kai Jiang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (H.-K.J.); (P.K.)
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Prashant Kurkute
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (H.-K.J.); (P.K.)
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (H.-K.J.); (P.K.)
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
16
|
Wu Z, Roberts DS, Melby JA, Wenger K, Wetzel M, Gu Y, Ramanathan SG, Bayne EF, Liu X, Sun R, Ong IM, McIlwain SJ, Ge Y. MASH Explorer: A Universal Software Environment for Top-Down Proteomics. J Proteome Res 2020; 19:3867-3876. [PMID: 32786689 DOI: 10.1021/acs.jproteome.0c00469] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Top-down mass spectrometry (MS)-based proteomics enable a comprehensive analysis of proteoforms with molecular specificity to achieve a proteome-wide understanding of protein functions. However, the lack of a universal software for top-down proteomics is becoming increasingly recognized as a major barrier, especially for newcomers. Here, we have developed MASH Explorer, a universal, comprehensive, and user-friendly software environment for top-down proteomics. MASH Explorer integrates multiple spectral deconvolution and database search algorithms into a single, universal platform which can process top-down proteomics data from various vendor formats, for the first time. It addresses the urgent need in the rapidly growing top-down proteomics community and is freely available to all users worldwide. With the critical need and tremendous support from the community, we envision that this MASH Explorer software package will play an integral role in advancing top-down proteomics to realize its full potential for biomedical research.
Collapse
Affiliation(s)
- Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - David S Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jake A Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Kent Wenger
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Molly Wetzel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yiwen Gu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | | | - Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States.,Center for Computational Biology and Bioinformatics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Ruixiang Sun
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Sean J McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
17
|
Hua X, Chu GC, Li YM. The Ubiquitin Enigma: Progress in the Detection and Chemical Synthesis of Branched Ubiquitin Chains. Chembiochem 2020; 21:3313-3318. [PMID: 32621561 DOI: 10.1002/cbic.202000295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/01/2020] [Indexed: 12/11/2022]
Abstract
Ubiquitin chains with distinct topologies play essential roles in eukaryotic cells. Recently, it was discovered that multiple ubiquitin units can be ligated to more than one lysine residue in the same ubiquitin to form diverse branched ubiquitin chains. Although there is increasing evidence implicating these branched chains in a plethora of biological functions, few mechanistic details have been elucidated. This concept article introduces the function, detection and chemical synthesis of branched ubiquitin chains; and offers some future perspective for this exciting new field.
Collapse
Affiliation(s)
- Xiao Hua
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases, Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.,Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Guo-Chao Chu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases, Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Deol KK, Eyles SJ, Strieter ER. Quantitative Middle-Down MS Analysis of Parkin-Mediated Ubiquitin Chain Assembly. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1132-1139. [PMID: 32297515 PMCID: PMC7333183 DOI: 10.1021/jasms.0c00058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Misregulation of the E3 ubiquitin ligase Parkin and the kinase PINK1 underlie both inherited and idiopathic Parkinson's disease-associated neurodegeneration. Parkin and PINK1 work together to catalyze the assembly of ubiquitin chains on substrates located on the outer mitochondrial membrane to facilitate autophagic removal of damaged mitochondria through a process termed mitophagy. Quantitative measurements of Parkin-mediated chain assembly, both in vitro and on mitochondria, have revealed that chains are composed of Lys6, Lys11, Lys48, and Lys63 linkages. The combinatorial nature of these chains is further expanded by the ability of PINK1 to phosphorylate individual subunits. The precise architecture of chains produced by the coordinated action of PINK1 and Parkin, however, are unknown. Here, we demonstrate that quantitative middle-down mass spectrometry using uniformly 15N-labeled ubiquitin variants as internal standards informs on the extent of chain branching. We find that Parkin is a prolific branching enzyme in vitro. Quantitative middle-down mass spectrometry also reveals that phospho-Ser65-ubiquitin (pSer65-Ub)-a key activator of Parkin-is not incorporated into chains to a significant extent. Our results suggest that Parkin-mediated chain branching is "on-pathway", and branch points are the principal targets of the deubiquitinase USP30.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| | - Stephen J Eyles
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
19
|
Liang YY, Zhang J, Cui H, Shao ZS, Cheng C, Wang YB, Wang HS. Fluorescence resonance energy transfer (FRET)-based nanoarchitecture for monitoring deubiquitinating enzyme activity. Chem Commun (Camb) 2020; 56:3183-3186. [PMID: 32067022 DOI: 10.1039/c9cc09808a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel nanoarchitecture (MSN-Tb-UbR) was prepared by modifying rhodamine B-labelled Ubs (Ub-Rs) on the surface of mesoporous silica nanoparticles (MSNs) loaded with Tb3+-complexes. The MSN-Tb-UbR exhibits ratiometric sensing ability for DUB (UCH-L1) with good sensitivity and selectivity.
Collapse
Affiliation(s)
- Yan-Yan Liang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Dittmar G, Winklhofer KF. Linear Ubiquitin Chains: Cellular Functions and Strategies for Detection and Quantification. Front Chem 2020; 7:915. [PMID: 31998699 PMCID: PMC6966713 DOI: 10.3389/fchem.2019.00915] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/16/2019] [Indexed: 01/06/2023] Open
Abstract
Ubiquitination of proteins is a sophisticated post-translational modification implicated in the regulation of an ever-growing abundance of cellular processes. Recent insights into different layers of complexity have shaped the concept of the ubiquitin code. Key players in determining this code are the number of ubiquitin moieties attached to a substrate, the architecture of polyubiquitin chains, and post-translational modifications of ubiquitin itself. Ubiquitination can induce conformational changes of substrates and alter their interactive profile, resulting in the formation of signaling complexes. Here we focus on a distinct type of ubiquitination that is characterized by an inter-ubiquitin linkage through the N-terminal methionine, called M1-linked or linear ubiquitination. Formation, recognition, and disassembly of linear ubiquitin chains are highly specific processes that are implicated in immune signaling, cell death regulation and protein quality control. Consistent with their role in influencing signaling events, linear ubiquitin chains are formed in a transient and spatially regulated manner, making their detection and quantification challenging.
Collapse
Affiliation(s)
- Gunnar Dittmar
- Proteomics of Cellular Signalling, Quantitative Biology Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Konstanze F Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
21
|
Cowell IG, Ling EM, Swan RL, Brooks MLW, Austin CA. The Deubiquitinating Enzyme Inhibitor PR-619 is a Potent DNA Topoisomerase II Poison. Mol Pharmacol 2019; 96:562-572. [PMID: 31515282 PMCID: PMC6776009 DOI: 10.1124/mol.119.117390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022] Open
Abstract
2,6-Diaminopyridine-3,5-bis(thiocyanate) (PR-619) is a broad-spectrum deubiquitinating enzyme (DUB) inhibitor that has been employed in cell-based studies as a tool to investigate the role of ubiquitination in various cellular processes. Here, we demonstrate that in addition to its action as a DUB inhibitor, PR-619 is a potent DNA topoisomerase II (TOP2) poison, inducing both DNA topoisomerase IIα (TOP2A) and DNA topoisomerase IIβ (TOP2B) covalent DNA complexes with similar efficiency to the archetypal TOP2 poison etoposide. However, in contrast to etoposide, which induces TOP2-DNA complexes with a pan-nuclear distribution, PR-619 treatment results in nucleolar concentration of TOP2A and TOP2B. Notably, neither the induction of TOP2-DNA covalent complexes nor their nucleolar concentration are due to TOP2 hyperubiquitination since both occur even under conditions of depleted ubiquitin. Like etoposide, since PR-619 affected TOP2 enzyme activity in in vitro enzyme assays as well as in live cells, we conclude that PR-619 interacts directly with TOP2A and TOP2B. The concentration at which PR-619 exhibits robust cellular DUB inhibitor activity (5-20 μM) is similar to the lowest concentration at which TOP2 poison activity was detected (above 20 μM), which suggests that caution should be exercised when employing this DUB inhibitor in cell-based studies.
Collapse
Affiliation(s)
- Ian G Cowell
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elise M Ling
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rebecca L Swan
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Matilda L W Brooks
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Caroline A Austin
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
22
|
Haakonsen DL, Rape M. Branching Out: Improved Signaling by Heterotypic Ubiquitin Chains. Trends Cell Biol 2019; 29:704-716. [PMID: 31300189 DOI: 10.1016/j.tcb.2019.06.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
Ubiquitin chains of distinct topologies control the stability, interactions, or localization of many proteins in eukaryotic cells, and thus play an essential role in cellular information transfer. It has recently been found that ubiquitin chains can be combined to produce branched conjugates that are characterized by the presence of at least two linkages within the same polymer. Akin to their homotypic counterparts, branched chains elicit a wide array of biological outputs, further expanding the versatility, specificity, and efficiency of ubiquitin-dependent signaling. This review discusses emerging understanding of the synthesis and function of branched ubiquitin chains.
Collapse
Affiliation(s)
- Diane L Haakonsen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Michael Rape
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
23
|
Abstract
The separation of sister chromatids at anaphase, which is regulated by an E3 ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C), is arguably the most important irrevocable event during the cell cycle. The APC/C and cyclin-dependent kinase 1 (Cdk1) are just two of the many significant cell cycle regulators and exert control through ubiquitylation and phosphorylation, respectively. The temporal and spatial regulation of the APC/C is achieved by multiple mechanisms, including phosphorylation, interaction with the structurally related co-activators Cdc20 and Cdh1, loading of distinct E2 ubiquitin-conjugating enzymes, binding with inhibitors and differential affinities for various substrates. Since the discovery of APC/C 25 years ago, intensive studies have uncovered many aspects of APC/C regulation, but we are still far from a full understanding of this important cellular machinery. Recent high-resolution cryogenic electron microscopy analysis and reconstitution of the APC/C have greatly advanced our understanding of molecular mechanisms underpinning the enzymatic properties of APC/C. In this review, we will examine the historical background and current understanding of APC/C regulation.
Collapse
Affiliation(s)
- Hiroyuki Yamano
- Cell Cycle Control Group, UCL Cancer Institute, University College London, Paul O’Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| |
Collapse
|
24
|
Kernan J, Bonacci T, Emanuele MJ. Who guards the guardian? Mechanisms that restrain APC/C during the cell cycle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1924-1933. [PMID: 30290241 DOI: 10.1016/j.bbamcr.2018.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 11/25/2022]
Abstract
The cell cycle is principally controlled by Cyclin Dependent Kinases (CDKs), whose oscillating activities are determined by binding to Cyclin coactivators. Cyclins exhibit dynamic changes in abundance as cells pass through the cell cycle. The sequential, timed accumulation and degradation of Cyclins, as well as many other proteins, imposes order on the cell cycle and contributes to genome maintenance. The destruction of many cell cycle regulated proteins, including Cyclins A and B, is controlled by a large, multi-subunit E3 ubiquitin ligase termed the Anaphase Promoting Complex/Cyclosome (APC/C). APC/C activity is tightly regulated during the cell cycle. Its activation state increases dramatically in mid-mitosis and it remains active until the end of G1 phase. Following its mandatory inactivation at the G1/S boundary, APC/C activity remains low until the subsequent mitosis. Due to its role in guarding against the inappropriate or untimely accumulation of Cyclins, the APC/C is a core component of the cell cycle oscillator. In addition to the regulation of Cyclins, APC/C controls the degradation of many other substrates. Therefore, it is vital that the activity of APC/C itself be tightly guarded. The APC/C is most well studied for its role and regulation during mitosis. However, the APC/C also plays a similarly important and conserved role in the maintenance of G1 phase. Here we review the diverse mechanisms counteracting APC/C activity throughout the cell cycle and the importance of their coordinated actions on cell growth, proliferation, and disease.
Collapse
Affiliation(s)
- Jennifer Kernan
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Thomas Bonacci
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
25
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|