1
|
Almeida-Nunes DL, Nunes M, Osório H, Ferreira V, Lobo C, Monteiro P, Abreu MH, Bartosch C, Silvestre R, Dinis-Oliveira RJ, Ricardo S. Ovarian cancer ascites proteomic profile reflects metabolic changes during disease progression. Biochem Biophys Rep 2024; 39:101755. [PMID: 38974022 PMCID: PMC11225207 DOI: 10.1016/j.bbrep.2024.101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 07/09/2024] Open
Abstract
Ovarian cancer (OC) patients develop ascites, an accumulation of ascitic fluid in the peritoneal cavity anda sign of tumour dissemination within the peritoneal cavity. This body fluid is under-researched, mainly regarding the ascites formed during tumour progression that have no diagnostic value and, therefore, are discarded. We performed a discovery proteomics study to identify new biomarkers in the ascites supernatant of OC patients. In this preliminary study, we analyzed a small amount of OC ascites to highlight the importance of not discarding such biological material during treatment, which could be valuable for OC management. Our findings reveal that OC malignant ascitic fluid (MAF) displays a proliferative environment that promotes the growth of OC cells that shift the metabolic pathway using alternative sources of nutrients, such as the cholesterol pathway. Also, OC ascites drained from patients during treatment showed an immunosuppressive environment, with up-regulation of proteins from the signaling pathways of IL-4 and IL-13 and down-regulation from the MHC-II. This preliminary study pinpointed a new protein (Transmembrane Protein 132A) in the OC context that deserves to be better explored in a more extensive cohort of patients' samples. The proteomic profile of MAF from OC patients provides a unique insight into the metabolic kinetics of cancer cells during disease progression, and this information can be used to develop more effective treatment strategies.
Collapse
Affiliation(s)
- Diana Luísa Almeida-Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| | - Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - Hugo Osório
- Proteomics Scientific Platform, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Department of Pathology, Faculty of Medicine from University of Porto (FMUP), 4200-319, Porto, Portugal
| | - Verónica Ferreira
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Cláudia Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Paula Monteiro
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Miguel Henriques Abreu
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (CI-IPO-Porto) / Health Research Network (RISE@CI-IPO-Porto), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine from University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
- UCIBIO - Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
- FOREN – Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, 1400-136, Lisbon, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| |
Collapse
|
2
|
Du G, Yang R, Qiu J, Xia J. Multifaceted Influence of Histone Deacetylases on DNA Damage Repair: Implications for Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:231-243. [PMID: 36406320 PMCID: PMC9647118 DOI: 10.14218/jcth.2022.00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers and a leading cause of cancer-related mortality worldwide, but its pathogenesis remains largely unknown. Nevertheless, genomic instability has been recognized as one of the facilitating characteristics of cancer hallmarks that expedites the acquisition of genetic diversity. Genomic instability is associated with a greater tendency to accumulate DNA damage and tumor-specific DNA repair defects, which gives rise to gene mutations and chromosomal damage and causes oncogenic transformation and tumor progression. Histone deacetylases (HDACs) have been shown to impair a variety of cellular processes of genome stability, including the regulation of DNA damage and repair, reactive oxygen species generation and elimination, and progression to mitosis. In this review, we provide an overview of the role of HDAC in the different aspects of DNA repair and genome instability in HCC as well as the current progress on the development of HDAC-specific inhibitors as new cancer therapies.
Collapse
Affiliation(s)
- Gan Du
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Ruizhe Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Jianguo Qiu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Correspondence to: Jie Xia, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, No. 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel/Fax: +86-23-68486780, E-mail: ; Jianguo Qiu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 You Yi Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel: +86-23-68486780, Fax: +86-23-89011016, E-mail:
| | - Jie Xia
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- Correspondence to: Jie Xia, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, No. 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel/Fax: +86-23-68486780, E-mail: ; Jianguo Qiu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 You Yi Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel: +86-23-68486780, Fax: +86-23-89011016, E-mail:
| |
Collapse
|
3
|
Toward More Comprehensive Homologous Recombination Deficiency Assays in Ovarian Cancer, Part 1: Technical Considerations. Cancers (Basel) 2022; 14:cancers14051132. [PMID: 35267439 PMCID: PMC8909526 DOI: 10.3390/cancers14051132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary High-grade serous ovarian cancer (HGSOC) is the most frequent and lethal form of ovarian cancer and is associated with homologous recombination deficiency (HRD) in 50% of cases. This specific alteration is associated with sensitivity to PARP inhibitors (PARPis). Despite vast prognostic improvements due to PARPis, current molecular assays assessing HRD status suffer from several limitations, and there is an urgent need for a more accurate evaluation. In these companion reviews (Part 1: Technical considerations; Part 2: Medical perspectives), we develop an integrative review to provide physicians and researchers involved in HGSOC management with a holistic perspective, from translational research to clinical applications. Abstract High-grade serous ovarian cancer (HGSOC), the most frequent and lethal form of ovarian cancer, exhibits homologous recombination deficiency (HRD) in 50% of cases. In addition to mutations in BRCA1 and BRCA2, which are the best known thus far, defects can also be caused by diverse alterations to homologous recombination-related genes or epigenetic patterns. HRD leads to genomic instability (genomic scars) and is associated with PARP inhibitor (PARPi) sensitivity. HRD is currently assessed through BRCA1/2 analysis, which produces a genomic instability score (GIS). However, despite substantial clinical achievements, FDA-approved companion diagnostics (CDx) based on GISs have important limitations. Indeed, despite the use of GIS in clinical practice, the relevance of such assays remains controversial. Although international guidelines include companion diagnostics as part of HGSOC frontline management, they also underscore the need for more powerful and alternative approaches for assessing patient eligibility to PARP inhibitors. In these companion reviews, we review and present evidence to date regarding HRD definitions, achievements and limitations in HGSOC. Part 1 is dedicated to technical considerations and proposed perspectives that could lead to a more comprehensive and dynamic assessment of HR, while Part 2 provides a more integrated approach for clinicians.
Collapse
|
4
|
Jiang S, Ren J, Xu Q, Zou X, Li Y, Zhang CY. Simultaneous single-molecule detection of the acetyltransferase and crotonyltransferase activities of histone acetylation writer p300. Chem Commun (Camb) 2021; 57:11709-11712. [PMID: 34693944 DOI: 10.1039/d1cc05449j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate for the first time the simultaneous measurement of the acetyltransferase (HAT) and crotonyltransferase (HCT) activities of histone acetylation writer p300 by integrating antibody-based fluorescence labeling with single molecule detection. This methods exhibits good specificity and high sensitivity. Moreover, it can accurately evaluate the kinetic parameters of both the HAT and HCT activities of p300 and screen inhibitors.
Collapse
Affiliation(s)
- Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Jingyi Ren
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Yueying Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
5
|
Murray-Nerger LA, Cristea IM. Lamin post-translational modifications: emerging toggles of nuclear organization and function. Trends Biochem Sci 2021; 46:832-847. [PMID: 34148760 DOI: 10.1016/j.tibs.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/03/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023]
Abstract
Nuclear lamins are ancient type V intermediate filaments with diverse functions that include maintaining nuclear shape, mechanosignaling, tethering and stabilizing chromatin, regulating gene expression, and contributing to cell cycle progression. Despite these numerous roles, an outstanding question has been how lamins are regulated. Accumulating work indicates that a range of lamin post-translational modifications (PTMs) control their functions both in homeostatic cells and in disease states such as progeria, muscular dystrophy, and viral infection. Here, we review the current knowledge of the diverse types of PTMs that regulate lamins in a site-specific manner. We highlight methods that can be used to characterize lamin PTMs whose functions are currently unknown and provide a perspective on the future of the lamin PTM field.
Collapse
Affiliation(s)
- Laura A Murray-Nerger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
6
|
McDermott JE, Arshad OA, Petyuk VA, Fu Y, Gritsenko MA, Clauss TR, Moore RJ, Schepmoes AA, Zhao R, Monroe ME, Schnaubelt M, Tsai CF, Payne SH, Huang C, Wang LB, Foltz S, Wyczalkowski M, Wu Y, Song E, Brewer MA, Thiagarajan M, Kinsinger CR, Robles AI, Boja ES, Rodriguez H, Chan DW, Zhang B, Zhang Z, Ding L, Smith RD, Liu T, Rodland KD. Proteogenomic Characterization of Ovarian HGSC Implicates Mitotic Kinases, Replication Stress in Observed Chromosomal Instability. CELL REPORTS MEDICINE 2020; 1. [PMID: 32529193 PMCID: PMC7289043 DOI: 10.1016/j.xcrm.2020.100004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the absence of a dominant driving mutation other than uniformly present TP53 mutations, deeper understanding of the biology driving ovarian high-grade serous cancer (HGSC) requires analysis at a functional level, including post-translational modifications. Comprehensive proteogenomic and phosphoproteomic characterization of 83 prospectively collected ovarian HGSC and appropriate normal precursor tissue samples (fallopian tube) under strict control of ischemia time reveals pathways that significantly differentiate between HGSC and relevant normal tissues in the context of homologous repair deficiency (HRD) status. In addition to confirming key features of HGSC from previous studies, including a potential survival-associated signature and histone acetylation as a marker of HRD, deep phosphoproteomics provides insights regarding the potential role of proliferation-induced replication stress in promoting the characteristic chromosomal instability of HGSC and suggests potential therapeutic targets for use in precision medicine trials. Comparison of ovarian cancer and normal precursors identifies key signaling pathways Mitotic and cyclin-dependent kinases emerge as potential therapeutic targets Previously identified hallmarks of homologous repair status and survival are confirmed Replication stress appears to drive increased chromosomal instability
Collapse
Affiliation(s)
- Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97201, USA.,These authors contributed equally
| | - Osama A Arshad
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.,These authors contributed equally
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Yi Fu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Therese R Clauss
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liang-Bo Wang
- The McDonnell Genome Institute, Washington University in St. Louis, St Louis, MO 63108, USA
| | - Steven Foltz
- The McDonnell Genome Institute, Washington University in St. Louis, St Louis, MO 63108, USA
| | - Matthew Wyczalkowski
- The McDonnell Genome Institute, Washington University in St. Louis, St Louis, MO 63108, USA
| | - Yige Wu
- The McDonnell Genome Institute, Washington University in St. Louis, St Louis, MO 63108, USA
| | - Ehwang Song
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Molly A Brewer
- Department of Obstetrics and Gynecology, University of Connecticut, Farmington, CT 06030, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Li Ding
- The McDonnell Genome Institute, Washington University in St. Louis, St Louis, MO 63108, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.,Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA.,Lead Contact
| | | |
Collapse
|
7
|
Thomas SP, Haws SA, Borth LE, Denu JM. A practical guide for analysis of histone post-translational modifications by mass spectrometry: Best practices and pitfalls. Methods 2019; 184:53-60. [PMID: 31816396 DOI: 10.1016/j.ymeth.2019.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Advances in mass spectrometry (MS) have revolutionized the ability to measure global changes in histone post-translational modifications (PTMs). The method routinely quantifies over 60 modification states in a single sample, far exceeding the capabilities of traditional western blotting. Thus, MS-based histone analysis has become an increasingly popular tool for understanding how genetic and environmental factors influence epigenetic states. However, histone proteomics experiments exhibit unique challenges, such as batch-to-batch reproducibility, accurate peak integration, and noisy data. Here, we discuss the steps of histone PTM analysis, from sample preparation and peak integration to data analysis and validation. We outline a set of best practices for ensuring data quality, accurate normalization, and robust statistics. Using these practices, we quantify histone modifications in 5 human cell lines, revealing that each cell line exhibits a unique epigenetic signature. We also provide a reproducible workflow for histone PTM analysis in the form of an R script, which is freely available at https://github.com/DenuLab/HistoneAnalysisWorkflow.
Collapse
Affiliation(s)
- Sydney P Thomas
- Wisconsin Institute for Discovery, 330 N. Orchard Street, Madison, WI, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, 420 Henry Mall, Madison, WI, USA
| | - Spencer A Haws
- Wisconsin Institute for Discovery, 330 N. Orchard Street, Madison, WI, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, 420 Henry Mall, Madison, WI, USA
| | - Laura E Borth
- Wisconsin Institute for Discovery, 330 N. Orchard Street, Madison, WI, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, 420 Henry Mall, Madison, WI, USA
| | - John M Denu
- Wisconsin Institute for Discovery, 330 N. Orchard Street, Madison, WI, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, 420 Henry Mall, Madison, WI, USA.
| |
Collapse
|
8
|
Ma F, Jiang S, Zhang CY. Recent advances in histone modification and histone modifying enzyme assays. Expert Rev Mol Diagn 2018; 19:27-36. [DOI: 10.1080/14737159.2019.1559053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fei Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| |
Collapse
|
9
|
Lv T, Song K, Zhang L, Li W, Chen Y, Diao Y, Yao Q, Liu P. miRNA-34a decreases ovarian cancer cell proliferation and chemoresistance by targeting HDAC1. Biochem Cell Biol 2018; 96:663-671. [PMID: 29561664 DOI: 10.1139/bcb-2018-0031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study aimed to explore the roles of miRNA-34a (miR-34a) in ovarian cancer (OC) cells and uncover possible mechanisms. The proliferation of OC cells was measured with an MTT assay and soft agar colony formation assay. TargetScan analysis, real-time PCR, and a luciferase reporter assay were used to demonstrate the downstream target of miR-34a in OC cells. HDAC1 expression levels were detected by immunoblot analysis. miR-34a inhibited the proliferation of SKOV3 and OVCA433 cells and enhanced cisplatin sensitivity in cisplatin-resistant SKOV3cp cells. The results of TargetScan analysis, real-time PCR, and luciferase reporter assay confirmed that miR-34a downregulated HDAC1 expression by directly targeting the 3'-UTR of HDAC1 mRNA. The overexpression of HDAC1 decreased cisplatin sensitivity and promoted proliferation in OC cells. MTT assay and soft agar colony formation assay showed that HDAC1 overexpression blocked the suppressive effects of miR-34a on SKOV3 cell proliferation. In addition, treatment with the miR-34a mimic partially recovered the cisplatin sensitivity of SKOV3cp cells, whereas HDAC1 overexpression blocked the above phenomena caused by treatment with the miR-34a mimic. miR-34a exhibited suppressive effects on OC cells via directly binding and downregulating HDAC1 expression, which subsequently decreased the resistance to cisplatin and suppressed proliferation in OC cells.
Collapse
Affiliation(s)
- Teng Lv
- a Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,b Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kejuan Song
- b Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Zhang
- c Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weihua Li
- b Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yulong Chen
- b Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuchao Diao
- b Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qin Yao
- b Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peishu Liu
- a Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|