1
|
Nysten J, Sofras D, Van Dijck P. One species, many faces: The underappreciated importance of strain diversity. PLoS Pathog 2024; 20:e1011931. [PMID: 38271302 PMCID: PMC10810500 DOI: 10.1371/journal.ppat.1011931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Affiliation(s)
- Jana Nysten
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Dimitrios Sofras
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Mvubu NE, Jacoby K. Mycobacterium tuberculosis complex molecular networks and their regulation: Implications of strain heterogeneity on epigenetic diversity and transcriptome regulation. Heliyon 2023; 9:e22611. [PMID: 38046135 PMCID: PMC10686871 DOI: 10.1016/j.heliyon.2023.e22611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
Tuberculosis has been a public health crisis since the 1900, which has caused the highest mortalities due to a single bacterial infection worldwide, that was recently further complicated by the Coronavirus disease 2019 pandemic. The causative agent of Tuberculosis, Mycobacterium tuberculosis, belongs to a genetically well-characterized family of strains known as the Mycobacterium tuberculosis complex, which has complicated progress made towards eradicating Tuberculosis due to pathogen-specific phenotypic differences in the members of this complex. Mycobacterium tuberculosis complex strains are genetically diverse human- and animal-adapted pathogens belonging to 7 lineages (Indo-Oceanic, East-Asian, East-African Indian, Euro-American, M. africanum West Africa 1, M. africanum West Africa 2 and Ethopia), respectively and the recently identified Lineage 8 and M. africanum Lineage 9. Genomic studies have revealed that Mycobacterium tuberculosis complex members are ∼99 % similar, however, due to selective pressure and adaptation to human host, they are prone to mutations that have resulted in development of drug resistance and phenotypic heterogeneity that impact strain virulence. Furthermore, members of the Mycobacterium tuberculosis complex have preferred geographic locations and possess unique phenotypic characteristics that is linked to their pathogenicity. Due to the recent advances in development next generation sequencing platforms, several studies have revealed epigenetic changes in genomic regions combined with "unique" gene regulatory mechanisms through non-coding RNAs that are responsible for strain-specific behaviour on in vitro and in vivo infection models. The current review provides up to date epigenetic patterns, gene regulation through non-coding RNAs, together with implications of these mechanisms in down-stream proteome and metabolome, which may be responsible for "unique" responses to infection by members of the Mycobacterium tuberculosis complex. Understanding lineage-specific molecular mechanisms during infection may provide novel drug targets and disease control measures towards World Health organization END-TB strategy.
Collapse
Affiliation(s)
- Nontobeko Eunice Mvubu
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Kieran Jacoby
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| |
Collapse
|
3
|
Ziembicka D, Gobis K, Szczesio M, Olczak A, Augustynowicz-Kopeć E, Głogowska A, Korona-Głowniak I, Bojanowski K. Synthesis and Structure-Activity Relationship of 2,6-Disubstituted Thiosemicarbazone Derivatives of Pyridine as Potential Antituberculosis Agents. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16010448. [PMID: 36614785 PMCID: PMC9822072 DOI: 10.3390/ma16010448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 05/27/2023]
Abstract
In this study, six new 2,6-disubstituted thiosemicarbazone derivatives of pyridine were synthesized (4−9), and their tuberculostatic activity was evaluated. All of them showed two- to eightfold higher activity (minimum inhibitory concentration (MIC) 0.5−4 µg/mL) against the resistant strain compared with the reference drug. Compounds 5 and 7, which contained the most basic substituents—pyrrolidine and piperidine—in their structure, strongly inhibited the growth of the standard strain (MIC 2 µg/mL). Furthermore, the same derivatives exhibited activity comparable to that of the reference drugs against some types of Gram-positive bacteria (MIC 0.49 µg/mL) and showed no cytotoxicity (IC50 > 50 µg/mL) in HaCaT cells. The zwitterionic structure of each compound was determined using X-ray crystallography. Absorption, distribution, metabolism, and excretion analyses showed that all compounds are good drug candidates. Thus, compounds 5 and 7 were identified as leading structures for further research on antituberculosis drugs with extended effects.
Collapse
Affiliation(s)
- Dagmara Ziembicka
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 107 Gen. Hallera Ave, 80-416 Gdansk, Poland
| | - Katarzyna Gobis
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 107 Gen. Hallera Ave, 80-416 Gdansk, Poland
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Żeromskiego St, 90-924 Lodz, Poland
| | - Andrzej Olczak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Żeromskiego St, 90-924 Lodz, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, Institute of Tuberculosis and Pulmonary Diseases, 26 Płocka St, 01-138 Warsaw, Poland
| | - Agnieszka Głogowska
- Department of Microbiology, Institute of Tuberculosis and Pulmonary Diseases, 26 Płocka St, 01-138 Warsaw, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki St, 20-093 Lublin, Poland
| | | |
Collapse
|
4
|
Chung ES, Johnson WC, Aldridge BB. Types and functions of heterogeneity in mycobacteria. Nat Rev Microbiol 2022; 20:529-541. [PMID: 35365812 DOI: 10.1038/s41579-022-00721-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/24/2022]
Abstract
The remarkable ability of Mycobacterium tuberculosis to survive attacks from the host immune response and drug treatment is due to the resilience of a few bacilli rather than a result of survival of the entire population. Maintenance of mycobacterial subpopulations with distinct phenotypic characteristics is key for survival in the face of dynamic and variable stressors encountered during infection. Mycobacterial populations develop a wide range of phenotypes through an innate asymmetric growth pattern and adaptation to fluctuating microenvironments during infection that point to heterogeneity being a vital survival strategy. In this Review, we describe different types of mycobacterial heterogeneity and discuss how heterogeneity is generated and regulated in response to environmental cues. We discuss how this heterogeneity may have a key role in recording memory of their environment at both the single-cell level and the population level to give mycobacterial populations plasticity to withstand complex stressors.
Collapse
Affiliation(s)
- Eun Seon Chung
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - William C Johnson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA. .,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA. .,Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA, USA. .,Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA.
| |
Collapse
|
5
|
Deep N-terminomics of Mycobacterium tuberculosis H37Rv extensively correct annotated encoding genes. Genomics 2021; 114:292-304. [PMID: 34915127 DOI: 10.1016/j.ygeno.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022]
Abstract
Mycobacterium tuberculosis (MTB) is a severe causing agent of tuberculosis (TB). Although H37Rv, the type strain of M. tuberculosis was sequenced in 1998, annotation errors of encoding genes have been frequently reported in hundreds of papers. This phenomenon is particularly severe at the 5' end of the genes. Here, we applied a TMPP [(N-Succinimidyloxycarbonylmethyl) tris (2,4,6-trimethoxyphenyl) phosphonium bromide] labeling combined with StageTip separating strategy on M. tuberculosis H37Rv to characterize the N-terminal start sites of its annotated encoding genes. Totally, 1047 proteins were identified with 2058 TMPP labeled N-terminal peptides from all the 2625 mass spectrometer (MS) sequenced proteins. Comparative genomics analysis allowed the re-annotation of 43 proteins' N-termini in H37Rv and 762 proteins in Mycobacteriaceae. All revised N-termini start sites were distributed in 5'-UTR of annotated genes due to over-annotation of previous N-terminal initiation codon, especially the ATG. In addition, we identified and verified a novel gene Rv1078A in +3 frame different from the annotated gene Rv1078 in +2 frame. Altogether, our findings contribute to the better understanding of N-terminal of H37Rv and other species from Mycobacteriaceae that can assist future studies on biological study.
Collapse
|
6
|
Fernandes GFS, Campos DL, Da Silva IC, Prates JLB, Pavan AR, Pavan FR, Dos Santos JL. Benzofuroxan Derivatives as Potent Agents against Multidrug-Resistant Mycobacterium tuberculosis. ChemMedChem 2021; 16:1268-1282. [PMID: 33410233 DOI: 10.1002/cmdc.202000899] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Tuberculosis (TB) is currently the leading cause of death related to infectious diseases worldwide, as reported by the World Health Organization. Moreover, the increasing number of multidrug-resistant tuberculosis (MDR-TB) cases has alarmed health agencies, warranting extensive efforts to discover novel drugs that are effective and also safe. In this study, 23 new compounds were synthesized and evaluated in vitro against the drug-resistant strains of M. tuberculosis. The compound 6-((3-fluoro-4-thiomorpholinophenyl)carbamoyl)benzo[c][1,2,5]oxadiazole 1-N-oxide (5 b) was particularly remarkable in this regard as it demonstrated MIC90 values below 0.28 μM against all the MDR strains evaluated, thus suggesting that this compound might have a different mechanism of action. Benzofuroxans are an attractive new class of anti-TB agents, exemplified by compound 5 b, with excellent potency against the replicating and drug-resistant strains of M. tuberculosis.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara Jaú Highway KM 01, 14800903, Araraquara, Brazil.,Institute of Chemistry, São Paulo State University (UNESP), Francisco Degni Street 55, 14800060, Araraquara, Brazil
| | - Débora L Campos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara Jaú Highway KM 01, 14800903, Araraquara, Brazil
| | - Isabel C Da Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara Jaú Highway KM 01, 14800903, Araraquara, Brazil
| | - João L B Prates
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara Jaú Highway KM 01, 14800903, Araraquara, Brazil.,Institute of Chemistry, São Paulo State University (UNESP), Francisco Degni Street 55, 14800060, Araraquara, Brazil
| | - Aline R Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara Jaú Highway KM 01, 14800903, Araraquara, Brazil.,Institute of Chemistry, São Paulo State University (UNESP), Francisco Degni Street 55, 14800060, Araraquara, Brazil
| | - Fernando R Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara Jaú Highway KM 01, 14800903, Araraquara, Brazil
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara Jaú Highway KM 01, 14800903, Araraquara, Brazil.,Institute of Chemistry, São Paulo State University (UNESP), Francisco Degni Street 55, 14800060, Araraquara, Brazil
| |
Collapse
|
7
|
Bespyatykh J, Arapidi G, Shitikov E. Proteogenomic Approach for Mycobacterium tuberculosis Investigation. Methods Mol Biol 2021; 2259:191-201. [PMID: 33687716 DOI: 10.1007/978-1-0716-1178-4_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent advances in MS/MS technology have made it possible to use proteomic data to predict protein-coding sequences. This approach is called proteogenomics, and it allows to correctly translate start and stop sites and to reveal new open reading frames. Here, we focus on using proteogenomics to improve the annotation of Mycobacteriumtuberculosis strains. We also describe detail procedures of the extraction of proteins and their further preparation for LC-MS/MS analysis and outline the main steps of data analysis.
Collapse
Affiliation(s)
- Julia Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia.
| | - Georgij Arapidi
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Egor Shitikov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
8
|
Jorge GL, Balbuena TS. Identification of novel protein-coding sequences in Eucalyptus grandis plants by high-resolution mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140594. [PMID: 33385527 DOI: 10.1016/j.bbapap.2020.140594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Eucalyptus species are widely used in the forestry industry, and a significant increase in the number of sequences available in database repositories has been observed for these species. In proteomics, a protein is identified by correlating the theoretical fragmentation spectrum derived from genomic/transcriptomic data against the experimental fragmentation mass spectrum acquired from large-scale analysis of protein mixtures. Proteogenomics is an alternative approach that can identify novel proteins encoded by regions previously considered as non-coding. This study aimed to confidently identify and confirm the existence of previously unknown protein-coding sequences in the Eucalyptus grandis genome. To this end, we used a modified spectral correlation strategy and a dedicated de novo peptide sequencing pipeline. Upon the strategy used here, we confidently identified 41 novel peptide forms and six peptides containing at least one single amino acid substitution. The most representative genomic class of novel peptides was identified as originating from alternative reading frames. In contrast, no clear single amino acid substitution pattern was identified. Validation of the identifications was carried out using a parallel reaction monitoring approach that provided further mass spectrometry support for the existence of the novel peptide sequences. Data are available via ProteomeXchange with identifier PXD022110.
Collapse
Affiliation(s)
- Gabriel Lemes Jorge
- Sao Paulo State University, Department of Technology, Jaboticabal, Sao Paulo, Brazil.
| | | |
Collapse
|
9
|
Asrani P, Hasan GM, Sohal SS, Hassan MI. Molecular Basis of Pathogenesis of Coronaviruses: A Comparative Genomics Approach to Planetary Health to Prevent Zoonotic Outbreaks in the 21st Century. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:634-644. [PMID: 32940573 DOI: 10.1089/omi.2020.0131] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the first quarter of the 21st century, we are already facing the third emergence of a coronavirus outbreak, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the coronavirus disease 2019 (COVID-19) pandemic. Comparative genomics can inform a deeper understanding of the pathogenesis of COVID-19. Previous strains of coronavirus, SARS-CoV, and Middle-East respiratory syndrome-coronavirus (MERS-CoV), have been known to cause acute lung injuries in humans. SARS-CoV-2 shares genetic similarity with SARS-CoV with some modification in the S protein leading to their enhanced binding affinity toward the angiotensin-converting enzyme 2 (ACE2) receptors of human lung cells. This expert review examines the features of all three coronaviruses through a conceptual lens of comparative genomics. In particular, the life cycle of SARS-CoV-2 that enables its survival within the host is highlighted. Susceptibility of humans to coronavirus outbreaks in the 21st century calls for comparisons of the transmission history, hosts, reservoirs, and fatality rates of these viruses so that evidence-based and effective planetary health interventions can be devised to prevent future zoonotic outbreaks. Comparative genomics offers new insights on putative and novel viral targets with an eye to both therapeutic innovation and prevention. We conclude the expert review by (1) articulating the lessons learned so far, whereas the research is still being actively sought after in the field, and (2) the challenges and prospects in deciphering the linkages among multiomics biological variability and COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Purva Asrani
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
10
|
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaíno JA. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 2020; 47:D442-D450. [PMID: 30395289 PMCID: PMC6323896 DOI: 10.1093/nar/gky1106] [Citation(s) in RCA: 5290] [Impact Index Per Article: 1058.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
The PRoteomics IDEntifications (PRIDE) database (https://www.ebi.ac.uk/pride/) is the world’s largest data repository of mass spectrometry-based proteomics data, and is one of the founding members of the global ProteomeXchange (PX) consortium. In this manuscript, we summarize the developments in PRIDE resources and related tools since the previous update manuscript was published in Nucleic Acids Research in 2016. In the last 3 years, public data sharing through PRIDE (as part of PX) has definitely become the norm in the field. In parallel, data re-use of public proteomics data has increased enormously, with multiple applications. We first describe the new architecture of PRIDE Archive, the archival component of PRIDE. PRIDE Archive and the related data submission framework have been further developed to support the increase in submitted data volumes and additional data types. A new scalable and fault tolerant storage backend, Application Programming Interface and web interface have been implemented, as a part of an ongoing process. Additionally, we emphasize the improved support for quantitative proteomics data through the mzTab format. At last, we outline key statistics on the current data contents and volume of downloads, and how PRIDE data are starting to be disseminated to added-value resources including Ensembl, UniProt and Expression Atlas.
Collapse
Affiliation(s)
- Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Attila Csordas
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jingwen Bai
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Manuel Bernal-Llinares
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Suresh Hewapathirana
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Deepti J Kundu
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Avinash Inuganti
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Johannes Griss
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.,Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Gerhard Mayer
- Ruhr University Bochum, Medical Faculty, Medizinisches Proteom-Center, D-44801 Bochum, Germany
| | - Martin Eisenacher
- Ruhr University Bochum, Medical Faculty, Medizinisches Proteom-Center, D-44801 Bochum, Germany
| | - Enrique Pérez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Julian Uszkoreit
- Ruhr University Bochum, Medical Faculty, Medizinisches Proteom-Center, D-44801 Bochum, Germany
| | - Julianus Pfeuffer
- Applied Bioinformatics, Department for Computer Science, University of Tuebingen, Sand 14, 72076 Tuebingen, Germany
| | - Timo Sachsenberg
- Applied Bioinformatics, Department for Computer Science, University of Tuebingen, Sand 14, 72076 Tuebingen, Germany
| | - Sule Yilmaz
- Computational Systems Biochemistry, Max Planck Institute for Biochemistry, Martinsried, 82152, Germany
| | - Shivani Tiwary
- Computational Systems Biochemistry, Max Planck Institute for Biochemistry, Martinsried, 82152, Germany
| | - Jürgen Cox
- Computational Systems Biochemistry, Max Planck Institute for Biochemistry, Martinsried, 82152, Germany
| | - Enrique Audain
- Department of Congenital Heart Disease and Pediatric Cardiology, Universitätsklinikum Schleswig-Holstein Kiel, Kiel, 24105, Germany
| | - Mathias Walzer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andrew F Jarnuczak
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Tobias Ternent
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
11
|
Kriek M, Monyai K, Magcwebeba TU, Du Plessis N, Stoychev SH, Tabb DL. Interrogating Fractionation and Other Sources of Variability in Shotgun Proteomes Using Quality Metrics. Proteomics 2020; 20:e1900382. [PMID: 32415754 DOI: 10.1002/pmic.201900382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/04/2020] [Indexed: 12/14/2022]
Abstract
The increasing amount of publicly available proteomics data creates opportunities for data scientists to investigate quality metrics in novel ways. QuaMeter IDFree is used to generate quality metrics from 665 RAW files and 97 WIFF files representing publicly available "shotgun" mass spectrometry datasets. These experiments are selected to represent Mycobacterium tuberculosis lysates, mouse MDSCs, and exosomes derived from human cell lines. Machine learning techniques are demonstrated to detect outliers within experiments and it is shown that quality metrics may be used to distinguish sources of variability among these experiments. In particular, the findings demonstrate that according to nested ANOVA performed on an SDS-PAGE shotgun principal component analysis, runs of fractions from the same gel regions cluster together rather than technical replicates, close temporal proximity, or even biological samples. This indicates that the individual fraction may have had a higher impact on the quality metrics than other factors. In addition, sample type, instrument type, mass analyzer, fragmentation technique, and digestion enzyme are identified as sources of variability. From a quality control perspective, the importance of study design and in particular, the run order, is illustrated in seeking ways to limit the impact of technical variability.
Collapse
Affiliation(s)
- Marina Kriek
- SATBBI (South African Tuberculosis Bioinformatics Initiative), Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, 7505, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, 7505, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Cape Town, 7505, South Africa.,Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| | - Koena Monyai
- Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Tandeka U Magcwebeba
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, 7505, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Cape Town, 7505, South Africa.,Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| | - Nelita Du Plessis
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, 7505, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Cape Town, 7505, South Africa.,Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| | - Stoyan H Stoychev
- Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - David L Tabb
- SATBBI (South African Tuberculosis Bioinformatics Initiative), Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, 7505, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, 7505, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Cape Town, 7505, South Africa.,Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| |
Collapse
|
12
|
Gallant J, Mouton J, Ummels R, Ten Hagen-Jongman C, Kriel N, Pain A, Warren RM, Bitter W, Heunis T, Sampson SL. Identification of gene fusion events in Mycobacterium tuberculosis that encode chimeric proteins. NAR Genom Bioinform 2020; 2:lqaa033. [PMID: 33575588 PMCID: PMC7671302 DOI: 10.1093/nargab/lqaa033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/16/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen responsible for causing tuberculosis. The harsh environment in which M. tuberculosis survives requires this pathogen to continuously adapt in order to maintain an evolutionary advantage. However, the apparent absence of horizontal gene transfer in M. tuberculosis imposes restrictions in the ways by which evolution can occur. Large-scale changes in the genome can be introduced through genome reduction, recombination events and structural variation. Here, we identify a functional chimeric protein in the ppe38-71 locus, the absence of which is known to have an impact on protein secretion and virulence. To examine whether this approach was used more often by this pathogen, we further develop software that detects potential gene fusion events from multigene deletions using whole genome sequencing data. With this software we could identify a number of other putative gene fusion events within the genomes of M. tuberculosis isolates. We were able to demonstrate the expression of one of these gene fusions at the protein level using mass spectrometry. Therefore, gene fusions may provide an additional means of evolution for M. tuberculosis in its natural environment whereby novel chimeric proteins and functions can arise.
Collapse
Affiliation(s)
- James Gallant
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa.,Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Jomien Mouton
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Roy Ummels
- Medical Microbiology and Infection Control, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Corinne Ten Hagen-Jongman
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Nastassja Kriel
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, 001-0020, N20 W10 Kita-ku, Sapporo, Japan
| | - Robin M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Wilbert Bitter
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands.,Medical Microbiology and Infection Control, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Tiaan Heunis
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Samantha L Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|
13
|
Moopanar K, Mvubu NE. Lineage-specific differences in lipid metabolism and its impact on clinical strains of Mycobacterium tuberculosis. Microb Pathog 2020; 146:104250. [PMID: 32407863 DOI: 10.1016/j.micpath.2020.104250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023]
Abstract
Mycobacterium tuberculosis (M. tb) is the causative agent of TB and its incidences has been on the rise since 1993. Lipid metabolism is an imperative metabolic process, which grants M. tb the ability to utilize host-derived lipids as a secondary source of nutrition during infection. In addition to degrading host lipids, M. tb is proficient at using lipids, such as cholesterol, to facilitate its entry into macrophages. Mycolic acids, constituents of the mycobacterial cell wall, offer protection and aid in persistence of the bacterium. These are effectively synthesized using a complex fatty acid synthase system. Many pathogenesis studies have reported differences in lipid-metabolism of clinical strains of M. tb that belongs to diverse lineages of the Mycobacterium tuberculosis complex (MTBC). East-Asian and Euro-American lineages possess "unique" cell wall-associated lipids compared to the less transmissible Ethiopian lineage, which may offer these lineages a competitive advantage. Therefore, it is crucial to comprehend the complexities among the MTBC lineages with lipid metabolism and their impact on virulence, transmissibility and pathogenesis. Thus, this review provides an insight into lipid metabolism in various lineages of the MTBC and their impact on virulence and persistence during infection, as this may provide critical insight into developing novel therapeutics to combat TB.
Collapse
Affiliation(s)
- K Moopanar
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa.
| | - N E Mvubu
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa.
| |
Collapse
|
14
|
Mouton JM, Heunis T, Dippenaar A, Gallant JL, Kleynhans L, Sampson SL. Comprehensive Characterization of the Attenuated Double Auxotroph Mycobacterium tuberculosisΔ leuDΔ panCD as an Alternative to H37Rv. Front Microbiol 2019; 10:1922. [PMID: 31481950 PMCID: PMC6710366 DOI: 10.3389/fmicb.2019.01922] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023] Open
Abstract
Although currently available model organisms such as Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) have significantly contributed to our understanding of tuberculosis (TB) biology, these models have limitations such as differences in genome size, growth rates and virulence. However, attenuated Mycobacterium tuberculosis strains may provide more representative, safer models to study M. tuberculosis biology. For example, the M. tuberculosis ΔleuDΔpanCD double auxotroph, has undergone rigorous in vitro and in vivo safety testing. Like other auxotrophic strains, this has subsequently been approved for use in biosafety level (BSL) 2 facilities. Auxotrophic strains have been assessed as models for drug-resistant M. tuberculosis and for studying latent TB. These offer the potential as safe and useful models, but it is important to understand how well these recapitulate salient features of non-attenuated M. tuberculosis. We therefore performed a comprehensive comparison of M. tuberculosis H37Rv and M. tuberculosisΔleuDΔpanCD. These strains demonstrated similar in vitro and intra-macrophage replication rates, similar responses to anti-TB agents and whole genome sequence conservation. Shotgun proteomics analysis suggested that M. tuberculosisΔleuDΔpanCD has a heightened stress response that leads to reduced bacterial replication during exposure to acid stress, which has been verified using a dual-fluorescent replication reporter assay. Importantly, infection of human peripheral blood mononuclear cells with the 2 strains elicited comparable cytokine production, demonstrating the suitability of M. tuberculosisΔleuDΔpanCD for immunological assays. We provide comprehensive evidence to support the judicious use of M. tuberculosisΔleuDΔpanCD as a safe and suitable model organism for M. tuberculosis research, without the need for a BSL3 facility.
Collapse
Affiliation(s)
- Jomien M Mouton
- Department of Science and Technology/National Research Foundation (DST/NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tiaan Heunis
- Department of Science and Technology/National Research Foundation (DST/NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anzaan Dippenaar
- Department of Science and Technology/National Research Foundation (DST/NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - James L Gallant
- Department of Science and Technology/National Research Foundation (DST/NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Section of Molecular Microbiology, Amsterdam Institute of Molecules, Medicines, and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Léanie Kleynhans
- Department of Science and Technology/National Research Foundation (DST/NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Samantha L Sampson
- Department of Science and Technology/National Research Foundation (DST/NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
15
|
Weldatsadik R, Datta N, Kolmeder C, Vuopio J, Kere J, Wilkman S, Flatt J, Vuento R, Haapasalo K, Keskitalo S, Varjosalo M, Jokiranta T. Pool-seq driven proteogenomic database for Group G Streptococcus. J Proteomics 2019; 201:84-92. [DOI: 10.1016/j.jprot.2019.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/29/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
|
16
|
Rosani U, Young T, Bai CM, Alfaro AC, Venier P. Dual Analysis of Virus-Host Interactions: The Case of Ostreid herpesvirus 1 and the Cupped Oyster Crassostrea gigas. Evol Bioinform Online 2019; 15:1176934319831305. [PMID: 30828244 PMCID: PMC6388457 DOI: 10.1177/1176934319831305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Dual analyses of the interactions between Ostreid herpesvirus 1 (OsHV-1) and the bivalve Crassostrea gigas during infection can unveil events critical to the onset and progression of this viral disease and can provide novel strategies for mitigating and preventing oyster mortality. Among the currently used “omics” technologies, dual transcriptomics (dual RNA-seq) coupled with the analysis of viral DNA in the host tissues has greatly advanced the knowledge of genes and pathways mostly contributing to host defense responses, expression profiles of annotated and unknown OsHV-1 open reading frames (ORFs), and viral genome variability. In addition to dual RNA-seq, proteomics and metabolomics analyses have the potential to add complementary information, needed to understand how a malacoherpesvirus can redirect and exploit the vital processes of its host. This review explores our current knowledge of “omics” technologies in the study of host-pathogen interactions and highlights relevant applications of these fields of expertise to the complex case of C gigas infections by OsHV-1, which currently threaten the mollusk production sector worldwide.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Chang-Ming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Paola Venier
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Bespyatykh J, Smolyakov A, Guliaev A, Shitikov E, Arapidi G, Butenko I, Dogonadze M, Manicheva O, Ilina E, Zgoda V, Govorun V. Proteogenomic analysis of Mycobacterium tuberculosis Beijing B0/W148 cluster strains. J Proteomics 2019; 192:18-26. [DOI: 10.1016/j.jprot.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
|
18
|
Advani J, Verma R, Chatterjee O, Devasahayam Arokia Balaya R, Najar MA, Ravishankara N, Suresh S, Pachori PK, Gupta UD, Pinto SM, Chauhan DS, Tripathy SP, Gowda H, Prasad TK. Rise of Clinical Microbial Proteogenomics: A Multiomics Approach to Nontuberculous Mycobacterium—The Case ofMycobacterium abscessusUC22. ACTA ACUST UNITED AC 2019; 23:1-16. [DOI: 10.1089/omi.2018.0116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Renu Verma
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Rex Devasahayam Arokia Balaya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Namitha Ravishankara
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Sneha Suresh
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Praveen Kumar Pachori
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Umesh D. Gupta
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Sneha M. Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Devendra S. Chauhan
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Srikanth Prasad Tripathy
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - T.S. Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
19
|
Proffitt JM, Glenn J, Cesnik AJ, Jadhav A, Shortreed MR, Smith LM, Kavanagh K, Cox LA, Olivier M. Proteomics in non-human primates: utilizing RNA-Seq data to improve protein identification by mass spectrometry in vervet monkeys. BMC Genomics 2017; 18:877. [PMID: 29132314 PMCID: PMC5683380 DOI: 10.1186/s12864-017-4279-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/03/2017] [Indexed: 01/05/2023] Open
Abstract
Background Shotgun proteomics utilizes a database search strategy to compare detected mass spectra to a library of theoretical spectra derived from reference genome information. As such, the robustness of proteomics results is contingent upon the completeness and accuracy of the gene annotation in the reference genome. For animal models of disease where genomic annotation is incomplete, such as non-human primates, proteogenomic methods can improve the detection of proteins by incorporating transcriptional data from RNA-Seq to improve proteomics search databases used for peptide spectral matching. Customized search databases derived from RNA-Seq data are capable of identifying unannotated genetic and splice variants while simultaneously reducing the number of comparisons to only those transcripts actively expressed in the tissue. Results We collected RNA-Seq and proteomic data from 10 vervet monkey liver samples and used the RNA-Seq data to curate sample-specific search databases which were analyzed in the program Morpheus. We compared these results against those from a search database generated from the reference vervet genome. A total of 284 previously unannotated splice junctions were predicted by the RNA-Seq data, 92 of which were confirmed by peptide spectral matches. More than half (53/92) of these unannotated splice variants had orthologs in other non-human primates, suggesting that failure to match these peptides in the reference analyses likely arose from incomplete gene model information. The sample-specific databases also identified 101 unique peptides containing single amino acid substitutions which were missed by the reference database. Because the sample-specific searches were restricted to actively expressed transcripts, the search databases were smaller, more computationally efficient, and identified more peptides at the empirically derived 1 % false discovery rate. Conclusion Proteogenomic approaches are ideally suited to facilitate the discovery and annotation of proteins in less widely studies animal models such as non-human primates. We expect that these approaches will help to improve existing genome annotations of non-human primate species such as vervet. Electronic supplementary material The online version of this article (doi: 10.1186/s12864-017-4279-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Michael Proffitt
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jeremy Glenn
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Anthony J Cesnik
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Avinash Jadhav
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA.,Current address: Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, NRC Building, G-55, Winston-Salem, North Carolina, 27157, USA
| | | | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA.,Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin, USA
| | - Kylie Kavanagh
- Department of Pathology and Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Laura A Cox
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Michael Olivier
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA. .,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA. .,Current address: Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, NRC Building, G-55, Winston-Salem, North Carolina, 27157, USA.
| |
Collapse
|