1
|
Lin ZJ, He JW, Zhu SY, Xue LH, Zheng JF, Zheng LQ, Huang BX, Chen GZ, Lin PX. Gene-gene interaction network analysis indicates CNTN2 is a candidate gene for idiopathic generalized epilepsy. Neurogenetics 2024; 25:131-139. [PMID: 38460076 DOI: 10.1007/s10048-024-00748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 03/11/2024]
Abstract
Twin and family studies have established the genetic contribution to idiopathic generalized epilepsy (IGE). The genetic architecture of IGE is generally complex and heterogeneous, and the majority of the genetic burden in IGE remains unsolved. We hypothesize that gene-gene interactions contribute to the complex inheritance of IGE. CNTN2 (OMIM* 615,400) variants have been identified in cases with familial adult myoclonic epilepsy and other epilepsies. To explore the gene-gene interaction network in IGE, we took the CNTN2 gene as an example and investigated its co-occurrent genetic variants in IGE cases. We performed whole-exome sequencing in 114 unrelated IGE cases and 296 healthy controls. Variants were qualified with sequencing quality, minor allele frequency, in silico prediction, genetic phenotype, and recurrent case numbers. The STRING_TOP25 gene interaction network analysis was introduced with the bait gene CNTN2 (denoted as A). The gene-gene interaction pair mode was presumed to be A + c, A + d, A + e, with a leading gene A, or A + B + f, A + B + g, A + B + h, with a double-gene A + B, or other combinations. We compared the number of gene interaction pairs between the case and control groups. We identified three pairs in the case group, CNTN2 + PTPN18, CNTN2 + CNTN1 + ANK2 + ANK3 + SNTG2, and CNTN2 + PTPRZ1, while we did not discover any pairs in the control group. The number of gene interaction pairs in the case group was much more than in the control group (p = 0.021). Taking together the genetic bioinformatics, reported epilepsy cases, and statistical evidence in the study, we supposed CNTN2 as a candidate pathogenic gene for IGE. The gene interaction network analysis might help screen candidate genes for IGE or other complex genetic disorders.
Collapse
Affiliation(s)
- Zhi-Jian Lin
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Jun-Wei He
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Sheng-Yin Zhu
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Li-Hong Xue
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Jian-Feng Zheng
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Li-Qin Zheng
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Bi-Xia Huang
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Guo-Zhang Chen
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Peng-Xing Lin
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China.
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China.
| |
Collapse
|
2
|
Ling J, Huang Y, Sun Z, Guo X, Chang A, Pan J, Zhuo X. Exploration of the effect of Celastrol on protein targets in nasopharyngeal carcinoma: Network pharmacology, molecular docking and experimental evaluations. Front Pharmacol 2022; 13:996728. [PMID: 36506508 PMCID: PMC9726908 DOI: 10.3389/fphar.2022.996728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Celastrol, an important extract of Tripterygium wilfordii, shows strong antitumor activity in a variety of tumors including nasopharyngeal carcinoma (NPC). However, little is known about its targets in NPC. We aimed to screen the key gene targets of Celastrol in the treatment of NPC by means of in silico analyses (including network pharmacology and molecular docking) and experimental evaluations. Methods: The main target genes of Celastrol and the genes related to NPC were obtained by retrieving the relevant biological databases, and the common targets were screened. Protein-protein interaction analysis was used to screen the hub genes. Then, a "compound-target-disease" network model was created and molecular docking was used to predict the binding of Celastrol to the candidate hub proteins. Afterward, the expression changes of the candidate genes under the administration of Celastrol were verified in vitro and in vivo. Results: Sixty genes common to Celastrol and NPC were screened out, which may be related to numerous biological processes such as cell proliferation, apoptosis, and tube development, and enriched in various pathways such as PI3K- Akt, EGFR tyrosine kinase inhibitor resistance, and Apoptosis. The tight binding ability of the candidate hub proteins (TNF, VEGFA, and IL6) to Celastrol was predicted by molecular docking [Docking energy: TNF, -6.08; VEGFA,-6.76; IL6,-6.91(kcal/mol)]. In vitro experiments showed that the expression of TNF and VEGFA decreased while the expression of IL6 increased in NPC cells (CNE2 and HONE1) treated with Celastrol. In vivo experiments suggested that Celastrol significantly reduced the weight and volume of the transplanted tumors in tumor-bearing mice in vivo. The expression of TNF, VEGFA, and IL6 in the transplanted tumor cells could be regulated by using Celastrol, and the expression trends were consistent with the in vitro model. Conclusion: Several gene targets have been filtered out as the core targets of Celastrol in the treatment of NPC, which might be involved in a variety of signaling pathways. Hence, Celastrol may exert its anti-NPC activity through multiple targets and multiple pathways, which will provide new clues for further research. Future experiments are warranted to validate the findings.
Collapse
Affiliation(s)
- Junjun Ling
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu Huang
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhen Sun
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaopeng Guo
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Aoshuang Chang
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jigang Pan
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Jigang Pan, ; Xianlu Zhuo,
| | - Xianlu Zhuo
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Jigang Pan, ; Xianlu Zhuo,
| |
Collapse
|
3
|
Park HS, Chugh RM, Pergande MR, Cetin E, Siblini H, Esfandyari S, Cologna SM, Al-Hendy A. Non-Cytokine Protein Profile of the Mesenchymal Stem Cell Secretome That Regulates the Androgen Production Pathway. Int J Mol Sci 2022; 23:ijms23094633. [PMID: 35563028 PMCID: PMC9101816 DOI: 10.3390/ijms23094633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in reproductive-aged women, and it typically involves elevated androgen levels. Recently, it has been reported that human bone marrow mesenchymal stem cells (hBM-MSCs) can regulate androgen synthesis pathways. However, the details of the mechanism are still unclear. hBM-MSC-derived secreted factors (the secretome) are promising sources of cell-based therapy as they consist of various types of proteins. It is thus important to know which proteins interact with disease-implicated biomolecules. This work aimed to investigate which secretome components contain the key factor that inhibits testosterone synthesis. In this study, we fractionated hBM-MSC-conditioned media into three fractions based on their molecular weights and found that, of the three fractions, one had the ability to inhibit the androgen-producing genes efficiently. We also analyzed the components of this fraction and established a protein profile of the hBM-MSC secretome, which was shown to inhibit androgen synthesis. Our study describes a set of protein components present in the hBM-MSC secretome that can be used therapeutically to treat PCOS by regulating androgen production for the first time.
Collapse
Affiliation(s)
- Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (H.-S.P.); (E.C.); (H.S.)
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (R.M.C.); (S.E.)
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Melissa R. Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA; (M.R.P.); (S.M.C.)
| | - Esra Cetin
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (H.-S.P.); (E.C.); (H.S.)
| | - Hiba Siblini
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (H.-S.P.); (E.C.); (H.S.)
| | - Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (R.M.C.); (S.E.)
| | - Stephanie M. Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA; (M.R.P.); (S.M.C.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (H.-S.P.); (E.C.); (H.S.)
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (R.M.C.); (S.E.)
- Correspondence:
| |
Collapse
|
7
|
Mei S, Zhang K. Neglog: Homology-Based Negative Data Sampling Method for Genome-Scale Reconstruction of Human Protein-Protein Interaction Networks. Int J Mol Sci 2019; 20:ijms20205075. [PMID: 31614890 PMCID: PMC6829266 DOI: 10.3390/ijms20205075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
Rapid reconstruction of genome-scale protein-protein interaction (PPI) networks is instrumental in understanding the cellular processes and disease pathogenesis and drug reactions. However, lack of experimentally verified negative data (i.e., pairs of proteins that do not interact) is still a major issue that needs to be properly addressed in computational modeling. In this study, we take advantage of the very limited experimentally verified negative data from Negatome to infer more negative data for computational modeling. We assume that the paralogs or orthologs of two non-interacting proteins also do not interact with high probability. We coin an assumption as "Neglog" this assumption is to some extent supported by paralogous/orthologous structure conservation. To reduce the risk of bias toward the negative data from Negatome, we combine Neglog with less biased random sampling according to a certain ratio to construct training data. L2-regularized logistic regression is used as the base classifier to counteract noise and train on a large dataset. Computational results show that the proposed Neglog method outperforms pure random sampling method with sound biological interpretability. In addition, we find that independent test on negative data is indispensable for bias control, which is usually neglected by existing studies. Lastly, we use the Neglog method to validate the PPIs in STRING, which are supported by gene ontology (GO) enrichment analyses.
Collapse
Affiliation(s)
- Suyu Mei
- Software College, Shenyang Normal University, Shenyang 110034, China.
| | - Kun Zhang
- Bioinformatics facility of Xavier NIH RCMI Cancer Research Center, Department of Computer Science, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| |
Collapse
|