1
|
Ma X, Yang A, Fan X, Liu H, Gu Y, Wang Z, Guo H, Fang J, Cui H, Gou L, Deng J, Cai D, Zuo Z. Resistin alleviates lipopolysaccharide-induced inflammation in bovine alveolar macrophages by activating the AMPK/mTOR signaling pathway and autophagy. Heliyon 2024; 10:e38026. [PMID: 39386884 PMCID: PMC11462211 DOI: 10.1016/j.heliyon.2024.e38026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Objective Resistin (RETN) is an adipocyte-specific hormone that participates in metabolism and modulates cellular inflammation. Our study aimed to assess the effects of RETN treatment on autophagy and the underlying molecular and biological mechanisms in bovine alveolar macrophages (BAMs). Methods The optimal concentration of RETN + lipopolysaccharide (LPS) on macrophages was screened and then used to co-culture with alveolar macrophages. Autophagosomes in BAMs were examined using a transmission electron microscope (TEM). Quantitative real-time PCR (qRT-PCR) was used to detect the mRNA expression of microtubule-associated protein light chain 3 (LC3) and p62. Western blot (WB) was used to detect the protein expressions of LC3 and p62. The distribution of LC3 and p62 proteins in the cells was observed by immunofluorescence (IF). The concentrations of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) were detected using enzyme-linked immunosorbent assay (ELISA). The protein expression of adenosine-monophosphate-activated protein kinase (AMPK), p-AMPK, mammalian target of rapamycin (mTOR), and p-mTOR was detected using WB. Results The treatment of BAMs with RETN or LPS increased the number of autophagosomes and the ratio of LC3II/LC3I and decreased the expression level of p62 protein. RETN treatment significantly triggered autophagy compared to LPS treatment. Moreover, the ratios of p-AMPK/AMPK and p-mTOR/mTOR were upregulated and downregulated, respectively, after RETN treatment, suggesting that AMPK/mTOR signaling pathway activation is required for RETN-mediated autophagy in BAMs. Additionally, the ratio of LC3-II/LC3-I was lower, and the concentrations of IL-1β, IL-6, and TNF-α significantly decreased in the LPS and RETN co-treatment groups compared to the single LPS treatment group. However, both autophagy- and LPS-induced inflammation were partially alleviated by RETN treatment. Conclusion RETN can promote autophagy in BAMs by activating the AMPK/mTOR signaling pathway, it may help prevent LPS-induced inflammation.
Collapse
Affiliation(s)
- Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Aining Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoben Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hong Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhisheng Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Liping Gou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dongjie Cai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
2
|
Zhou L, Liu S, Li H, Wu S, Cao Y. Inhibitory Effect of Puerarin on Lipopolysaccharide-triggered Inflammatory Responses of Bovine Kidney Cells. Cell Biochem Biophys 2024; 82:1503-1510. [PMID: 38753248 DOI: 10.1007/s12013-024-01303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 08/25/2024]
Abstract
Puerarin (Pue), a flavonoid compound, possesses cytoprotective effects and LPS has been reported to induce renal inflammatory injury in bovine. However, whether Pue inhibits lipopolysaccharide (LPS)-induced inflammatory damage of bovine kidney cells remains unknown. Based on an in vitro model with Madin-Darby bovine kidney (MDBK) cell line, it has found that Pue attenuated LPS-induced damage of MDBK cells, as evidenced by cell viability and lactic dehydrogenase (LDH) release rescued by Pue (P < 0.05). Additionally, the real-time quantitative PCR (qPCR) and enzyme linked immunosorbent assay (ELISA) showed that LPS elevated the levels of pro-inflammatory factors interleukin (IL)-1β, IL-8 and tumor necrosis factor (TNF)-α, which was reversed by pretreatment of Pue (P < 0.05). Besides, Pue reduced the expression of Toll like receptor 4 (TLR4) and phosphorylated nuclear factor kappa B (p-NF-κB) of LPS-exposed MDBK cells (P < 0.05). Collectively, these results showed that Pue suppresses LPS-evoked inflammatory damage of bovine kidney cells, suggesting Pue a potential compound for intervention of bovine inflammation.
Collapse
Affiliation(s)
- Lingbo Zhou
- Loudi Vocational and Technical College, Loudi, 417000, China.
| | - Shasha Liu
- Loudi Vocational and Technical College, Loudi, 417000, China
| | - Huizhen Li
- Loudi Vocational and Technical College, Loudi, 417000, China
| | - Shujun Wu
- Loudi Vocational and Technical College, Loudi, 417000, China
| | - Yan Cao
- Loudi Vocational and Technical College, Loudi, 417000, China
| |
Collapse
|
3
|
He J, Wang L, Wang Y, Li Z, Chen F, Liu Z. Metabolomics Combined with Network Pharmacology Uncovers Effective Targets of Tao-Hong-Si-Wu Decoction for Its Protection from Sepsis-Associated Acute Lung Injury. JOURNAL OF ANALYSIS AND TESTING 2023; 7:172-186. [DOI: 10.1007/s41664-023-00248-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/18/2023] [Indexed: 07/14/2024]
|
4
|
Cui Y, Guo H, Zhang Q, Fang J, Xie Y, Chen S, Ma X, Gou L, Cui H, Geng Y, Ye G, Zhong Z, Ren Z, Wang Y, Deng J, Yu S, Cao S, Wang Z, Zuo Z. The combination of high glucose and LPS induces autophagy in bovine kidney epithelial cells via the Notch3/mTOR signaling pathway. BMC Vet Res 2022; 18:307. [PMID: 35953831 PMCID: PMC9367163 DOI: 10.1186/s12917-022-03395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aside respiratory diseases, beef cattle may also suffer from serious kidney diseases after transportation. Hyperglycemia and gram-negative bacterial infection may be the main reasons why bovine is prone to severe kidney disease during transportation stress, however, the precise mechanism is still unclear. The purpose of the current study is to explore whether the combined treatment of high glucose (HG) and lipopolysaccharide (LPS) could induce madin-darby bovine kidney (MDBK) cells injury and autophagy, as well as investigate the potential molecular mechanisms involved. RESULTS As we discovered, the combined effect of HG and LPS decreased MDBK cells viability. And, HG and LPS combination also induced autophagy in MDBK cells, which was characterized by increasing the expression of LC3-II/I and Beclin1 and decreasing p62 expression. LC3 fluorescence signal formation was also significantly increased by HG and LPS combination treatment. Furthermore, we measured whether the mammalian target of rapamycin (mTOR) and the Notch3 signaling pathways were involved in HG and LPS-induced autophagy. The results showed that the combination of HG and LPS significantly increased the protein expression of Notch3 and decreased protein expression of p-mTOR, indicating that Notch3 and mTOR signaling pathways were activated. However, co-treatment with the Notch3 inhibitor (DAPT) could reverse the induction of autophagy, and increased the protein expression of p-mTOR. CONCLUSIONS This study demonstrated that the combination effect of HG and LPS could induce autophagy in MDBK cells, and the Notch3/mTOR signaling pathway was involved in HG and LPS-induced autophagy.
Collapse
Grants
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
Collapse
Affiliation(s)
- Yaocheng Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hongrui Guo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qin Zhang
- Chengdu Customs of the People's Republic of China, Chengdu, 610095, Sichuan, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yue Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiyi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Ye
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shuming Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Suizhong Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhisheng Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Increased mortality and altered local immune response in secondary peritonitis after previous visceral operations in mice. Sci Rep 2021; 11:16175. [PMID: 34376743 PMCID: PMC8355121 DOI: 10.1038/s41598-021-95592-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/27/2021] [Indexed: 12/29/2022] Open
Abstract
Postoperative peritonitis is characterized by a more severe clinical course than other forms of secondary peritonitis. The pathophysiological mechanisms behind this phenomenon are incompletely understood. This study used an innovative model to investigate these mechanisms, combining the models of murine Colon Ascendens Stent Peritonitis (CASP) and Surgically induced Immune Dysfunction (SID). Moreover, the influence of the previously described anti-inflammatory reflex transmitted by the vagal nerve was characterized. SID alone, or 3 days before CASP were performed in female C57BL/6 N mice. Subdiaphragmatic vagotomy was performed six days before SID with following CASP. The immune status was assessed by FACS analysis and measurement of cytokines. Local intestinal inflammatory changes were characterized by immunohistochemistry. Mortality was increased in CASP animals previously subjected to SID. Subclinical bacteremia occurred after SID, and an immunosuppressive milieu occurred secondary to SID just before the induction of CASP. Previous SID modified the pattern of intestinal inflammation induced by CASP. Subdiaphragmatic vagotomy had no influence on sepsis mortality in our model of postoperative peritonitis. Our results indicate a surgery-induced inflammation of the small intestine and the peritoneal cavity with bacterial translocation, which led to immune dysfunction and consequently to a more severe peritonitis.
Collapse
|
6
|
Essential Role of Visfatin in Lipopolysaccharide and Colon Ascendens Stent Peritonitis-Induced Acute Lung Injury. Int J Mol Sci 2019; 20:ijms20071678. [PMID: 30987270 PMCID: PMC6480124 DOI: 10.3390/ijms20071678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Acute lung injury (ALI) is a life-threatening syndrome characterized by acute and severe hypoxemic respiratory failure. Visfatin, which is known as an obesity-related cytokine with pro-inflammatory activities, plays a role in regulation of inflammatory cytokines. The mechanisms of ALI remain unclear in critically ill patients. Survival in ALI patients appear to be influenced by the stress generated by mechanical ventilation and by ALI-associated factors that initiate the inflammatory response. The objective for this study was to understand the mechanisms of how visfatin regulates inflammatory cytokines and promotes ALI. The expression of visfatin was evaluated in ALI patients and mouse sepsis models. Moreover, the underlying mechanisms were investigated using human bronchial epithelial cell lines, BEAS-2B and NL-20. An increase of serum visfatin was discovered in ALI patients compared to normal controls. Results from hematoxylin and eosin (H&E) and immunohistochemistry staining also showed that visfatin protein was upregulated in mouse sepsis models. Moreover, lipopolysaccharide (LPS) induced visfatin expression, activated the STAT3/NFκB pathway, and increased the expression of pro-inflammatory cytokines, including IL1-β, IL-6, and TNF-α in human bronchial epithelial cell lines NL-20 and BEAS-2B. Co-treatment of visfatin inhibitor FK866 reversed the activation of the STAT3/NFκB pathway and the increase of pro-inflammatory cytokines induced by LPS. Our study provides new evidence for the involvement of visfatin and down-stream events in acute lung injury. Further studies are required to confirm whether the anti-visfatin approaches can improve ALI patient survival by alleviating the pro-inflammatory process.
Collapse
|
7
|
Foschi C, Laghi L, D’Antuono A, Gaspari V, Zhu C, Dellarosa N, Salvo M, Marangoni A. Urine metabolome in women with Chlamydia trachomatis infection. PLoS One 2018; 13:e0194827. [PMID: 29566085 PMCID: PMC5864028 DOI: 10.1371/journal.pone.0194827] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/09/2018] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to characterize the urine metabolome of women with Chlamydia trachomatis (CT) uro-genital infection (n = 21), comparing it with a group of CT-negative subjects (n = 98). By means of a proton-based nuclear magnetic resonance (1H-NMR) spectroscopy, we detected and quantified the urine metabolites of a cohort of 119 pre-menopausal Caucasian women, attending a STI Outpatients Clinic in Italy. In case of a CT positive result, CT molecular genotyping was performed by omp1 gene semi-nested PCR followed by RFLP analysis. We were able to identify several metabolites whose concentrations were significantly higher in the urine samples of CT-positive subjects, including sucrose, mannitol, pyruvate and lactate. In contrast, higher urinary levels of acetone represented the main feature of CT-negative women. These results were not influenced by the age of patients nor by the CT serovars (D, E, F, G, K) responsible of the urethral infections. Since the presence of sugars can increase the stability of chlamydial proteins, higher levels of sucrose and mannitol in the urethral lumen, related to a higher sugar consumption, could have favoured CT infection acquisition or could have been of aid for the bacterial viability. Peculiar dietary habits of the subjects enrolled, in term of type and amount of food consumed, could probably explain these findings. Lactate and pyruvate could result from CT-induced immunopathology, as a product of the inflammatory microenvironment. Further studies are needed to understand the potential role of these metabolites in the pathogenesis of CT infection, as well as their diagnostic/prognostic use.
Collapse
Affiliation(s)
- Claudio Foschi
- Microbiology, DIMES, University of Bologna, Bologna, Italy
- * E-mail:
| | - Luca Laghi
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Cesena, Italy
| | | | | | - Chenglin Zhu
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Cesena, Italy
| | - Nicolò Dellarosa
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Cesena, Italy
| | - Melissa Salvo
- Microbiology, DIMES, University of Bologna, Bologna, Italy
| | | |
Collapse
|