1
|
Chen X, Sun Y, Zhang T, Shu L, Roepstorff P, Yang F. Quantitative Proteomics Using Isobaric Labeling: A Practical Guide. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:689-706. [PMID: 35007772 PMCID: PMC9170757 DOI: 10.1016/j.gpb.2021.08.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 05/19/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023]
Abstract
In the past decade, relative proteomic quantification using isobaric labeling technology has developed into a key tool for comparing the expression of proteins in biological samples. Although its multiplexing capacity and flexibility make this a valuable technology for addressing various biological questions, its quantitative accuracy and precision still pose significant challenges to the reliability of its quantification results. Here, we give a detailed overview of the different kinds of isobaric mass tags and the advantages and disadvantages of the isobaric labeling method. We also discuss which precautions should be taken at each step of the isobaric labeling workflow, to obtain reliable quantification results in large-scale quantitative proteomics experiments. In the last section, we discuss the broad applications of the isobaric labeling technology in biological and clinical studies, with an emphasis on thermal proteome profiling and proteogenomics.
Collapse
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100149, China.
| | - Yaping Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100149, China
| | - Tingting Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100149, China
| | - Lian Shu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100149, China
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100149, China.
| |
Collapse
|
2
|
Evaluation of Filter, Paramagnetic, and STAGETips Aided Workflows for Proteome Profiling of Symbiodiniaceae Dinoflagellate. Processes (Basel) 2021. [DOI: 10.3390/pr9060983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The integrity of coral reef ecosystems worldwide rests on a fine-tuned symbiotic interaction between an invertebrate and a dinoflagellate microalga from the family Symbiodiniaceae. Recent advances in bottom-up shotgun proteomic approaches and the availability of vast amounts of genetic information about Symbiodiniaceae have provided a unique opportunity to better understand the molecular mechanisms underpinning the interactions of coral-Symbiodiniaceae. However, the resilience of this dinoflagellate cell wall, as well as the presence of polyanionic and phenolics cell wall components, requires the optimization of sample preparation techniques for successful implementation of bottom-up proteomics. Therefore, in this study we compare three different workflows—filter-aided sample preparation (FASP), single-pot solid-phase-enhanced sample preparation (SP3), and stop-and-go-extraction tips (STAGETips, ST)—to develop a high-throughput proteotyping protocol for Symbiodiniaceae algal research. We used the model isolate Symbiodinium tridacnidorum. We show that SP3 outperformed ST and FASP with regard to robustness, digestion efficiency, and contaminant removal, which led to the highest number of total (3799) and unique proteins detected from 23,593 peptides. Most of these proteins were detected with ≥2 unique peptides (73%), zero missed tryptic peptide cleavages (91%), and hydrophilic peptides (>70%). To demonstrate the functionality of this optimized SP3 sample preparation workflow, we examined the proteome of S. tridacnidorum to better understand the molecular mechanism of peridinin-chlorophyll-protein complex (PCP, light harvesting protein) accumulation under low light (LL, 30 μmol photon m−2 s−1). Cells exposed to LL for 7 days upregulated various light harvesting complex (LHCs) proteins through the mevalonate-independent pathway; proteins of this pathway were at 2- to 6-fold higher levels than the control of 120 μmol photon m−2 s−1. Potentially, LHCs which were maintained in an active phosphorylated state by serine/threonine-protein kinase were also upregulated to 10-fold over control. Collectively, our results show that the SP3 method is an efficient high-throughput proteotyping tool for Symbiodiniaceae algal research.
Collapse
|
3
|
Gao C, Chen X, Yu L, Jiang L, Pan D, Jiang S, Gan Y, Liu Y, Yi X. New 24-Membered Macrolactins Isolated from Marine Bacteria Bacillus siamensis as Potent Fungal Inhibitors against Sugarcane Smut. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4392-4401. [PMID: 33834775 DOI: 10.1021/acs.jafc.0c07415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sugarcane smut, caused by Sporisorium scitamineum, is one of the most devastating fungal diseases affecting sugarcane worldwide. To develop a potent sugarcane smut fungicide, secondary metabolites of marine-derived Bacillus siamensis were isolated and screened for inhibitory activities, which led to the discovery of five new 24-membered macrolactins, bamemacrolactins A-E (1-5), with 3 being the most potent inhibitor. The antifungal mechanism of 3 was studied by assessing its effects on mycelial morphology and the cell wall. Differential proteomics were used to analyze proteins in S. scitamineum upon treatment with bamemacrolactin C and to elucidate its antifungal mechanism. A total of 533 differentially expressed proteins were found. After the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, eight target proteins were selected, and their functions were discussed. Six of the eight proteins were reported as antifungal targets. The target proteins are involved in the oxidative phosphorylation pathway. Therefore, the potent inhibition of S. scitamineum by compound 3 is most likely through oxidative phosphorylation and targeting a series of enzymes.
Collapse
Affiliation(s)
- Chenghai Gao
- Institute of Marine Drugs, School of Pharmaceutical Sciences, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, NO. 13 Wuhe Rood, Nanning 530200, China
| | - Xianqiang Chen
- Institute of Marine Drugs, School of Pharmaceutical Sciences, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, NO. 13 Wuhe Rood, Nanning 530200, China
| | - Lian Yu
- Institute of Marine Drugs, School of Pharmaceutical Sciences, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, NO. 13 Wuhe Rood, Nanning 530200, China
| | - Lei Jiang
- Institute of Marine Drugs, School of Pharmaceutical Sciences, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, NO. 13 Wuhe Rood, Nanning 530200, China
| | - Dongjin Pan
- Institute of Marine Drugs, School of Pharmaceutical Sciences, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, NO. 13 Wuhe Rood, Nanning 530200, China
| | - Shu Jiang
- Institute of Marine Drugs, School of Pharmaceutical Sciences, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, NO. 13 Wuhe Rood, Nanning 530200, China
| | - Yuman Gan
- Institute of Marine Drugs, School of Pharmaceutical Sciences, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, NO. 13 Wuhe Rood, Nanning 530200, China
| | - Yonghong Liu
- Institute of Marine Drugs, School of Pharmaceutical Sciences, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, NO. 13 Wuhe Rood, Nanning 530200, China
| | - Xiangxi Yi
- Institute of Marine Drugs, School of Pharmaceutical Sciences, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, NO. 13 Wuhe Rood, Nanning 530200, China
| |
Collapse
|
4
|
Wang Z, Kavdia K, Dey KK, Pagala VR, Kodali K, Liu D, Lee DG, Sun H, Chepyala SR, Cho JH, Niu M, High AA, Peng J. High-throughput and Deep-proteome Profiling by 16-plex Tandem Mass Tag Labeling Coupled with Two-dimensional Chromatography and Mass Spectrometry. J Vis Exp 2020:10.3791/61684. [PMID: 32894271 PMCID: PMC7752892 DOI: 10.3791/61684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Isobaric tandem mass tag (TMT) labeling is widely used in proteomics because of its high multiplexing capacity and deep proteome coverage. Recently, an expanded 16-plex TMT method has been introduced, which further increases the throughput of proteomic studies. In this manuscript, we present an optimized protocol for 16-plex TMT-based deep-proteome profiling, including protein sample preparation, enzymatic digestion, TMT labeling reaction, two-dimensional reverse-phase liquid chromatography (LC/LC) fractionation, tandem mass spectrometry (MS/MS), and computational data processing. The crucial quality control steps and improvements in the process specific for the 16-plex TMT analysis are highlighted. This multiplexed process offers a powerful tool for profiling a variety of complex samples such as cells, tissues, and clinical specimens. More than 10,000 proteins and posttranslational modifications such as phosphorylation, methylation, acetylation, and ubiquitination in highly complex biological samples from up to 16 different samples can be quantified in a single experiment, providing a potent tool for basic and clinical research.
Collapse
Affiliation(s)
- Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital
| | - Kaushik Kumar Dey
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | | | - Kiran Kodali
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital
| | - Danting Liu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Dong Geun Lee
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Huan Sun
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Surendhar Reddy Chepyala
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital
| | - Mingming Niu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Anthony A High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital;
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital;
| |
Collapse
|
5
|
TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat Methods 2020; 17:399-404. [PMID: 32203386 DOI: 10.1038/s41592-020-0781-4] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Isobaric labeling empowers proteome-wide expression measurements simultaneously across multiple samples. Here an expanded set of 16 isobaric reagents based on an isobutyl-proline immonium ion reporter structure (TMTpro) is presented. These reagents have similar characteristics to existing tandem mass tag reagents but with increased fragmentation efficiency and signal. In a proteome-scale example dataset, we compared eight common cell lines with and without Torin1 treatment with three replicates, quantifying more than 8,800 proteins (mean of 7.5 peptides per protein) per replicate with an analysis time of only 1.1 h per proteome. Finally, we modified the thermal stability assay to examine proteome-wide melting shifts after treatment with DMSO, 1 or 20 µM staurosporine with five replicates. This assay identified and dose-stratified staurosporine binding to 228 cellular kinases in just one, 18-h experiment. TMTpro reagents allow complex experimental designs-all with essentially no missing values across the 16 samples and no loss in quantitative integrity.
Collapse
|
6
|
Deb B, George IA, Sharma J, Kumar P. Phosphoproteomics Profiling to Identify Altered Signaling Pathways and Kinase-Targeted Cancer Therapies. Methods Mol Biol 2020; 2051:241-264. [PMID: 31552632 DOI: 10.1007/978-1-4939-9744-2_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phosphorylation is one of the most extensively studied posttranslational modifications (PTM), which regulates cellular functions like cell growth, differentiation, apoptosis, and cell signaling. Kinase families cover a wide number of oncoproteins and are strongly associated with cancer. Identification of driver kinases is an intense area of cancer research. Thus, kinases serve as the potential target to improve the efficacy of targeted therapies. Mass spectrometry-based phosphoproteomic approach has paved the way to the identification of a large number of altered phosphorylation events in proteins and signaling cascades that may lead to oncogenic processes in a cell. Alterations in signaling pathways result in the activation of oncogenic processes predominantly regulated by kinases and phosphatases. Therefore, drugs such as kinase inhibitors, which target dysregulated pathways, represent a promising area for cancer therapy.
Collapse
Affiliation(s)
- Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Irene A George
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India. .,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India.
| |
Collapse
|
7
|
Zecha J, Satpathy S, Kanashova T, Avanessian SC, Kane MH, Clauser KR, Mertins P, Carr SA, Kuster B. TMT Labeling for the Masses: A Robust and Cost-efficient, In-solution Labeling Approach. Mol Cell Proteomics 2019; 18:1468-1478. [PMID: 30967486 PMCID: PMC6601210 DOI: 10.1074/mcp.tir119.001385] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/06/2019] [Indexed: 11/06/2022] Open
Abstract
Isobaric stable isotope labeling using, for example, tandem mass tags (TMTs) is increasingly being applied for large-scale proteomic studies. Experiments focusing on proteoform analysis in drug time course or perturbation studies or in large patient cohorts greatly benefit from the reproducible quantification of single peptides across samples. However, such studies often require labeling of hundreds of micrograms of peptides such that the cost for labeling reagents represents a major contribution to the overall cost of an experiment. Here, we describe and evaluate a robust and cost-effective protocol for TMT labeling that reduces the quantity of required labeling reagent by a factor of eight and achieves complete labeling. Under- and overlabeling of peptides derived from complex digests of tissues and cell lines were systematically evaluated using peptide quantities of between 12.5 and 800 μg and TMT-to-peptide ratios (wt/wt) ranging from 8:1 to 1:2 at different TMT and peptide concentrations. When reaction volumes were reduced to maintain TMT and peptide concentrations of at least 10 mm and 2 g/l, respectively, TMT-to-peptide ratios as low as 1:1 (wt/wt) resulted in labeling efficiencies of > 99% and excellent intra- and interlaboratory reproducibility. The utility of the optimized protocol was further demonstrated in a deep-scale proteome and phosphoproteome analysis of patient-derived xenograft tumor tissue benchmarked against the labeling procedure recommended by the TMT vendor. Finally, we discuss the impact of labeling reaction parameters for N-hydroxysuccinimide ester-based chemistry and provide guidance on adopting efficient labeling protocols for different peptide quantities.
Collapse
Affiliation(s)
- Jana Zecha
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Shankha Satpathy
- §Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Tamara Kanashova
- ¶Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Shayan C Avanessian
- §Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - M Harry Kane
- §Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Karl R Clauser
- §Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Philipp Mertins
- §Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA;; ¶Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany;; ‖Berlin Institute of Health, Berlin, Germany
| | - Steven A Carr
- §Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA;.
| | - Bernhard Kuster
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany;; **Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), TUM, Freising, Germany.
| |
Collapse
|
8
|
Abstract
A critical step in proteomics analysis is the optimal extraction and processing of protein material to ensure the highest sensitivity in downstream detection. Achieving this requires a sample-handling technology that exhibits unbiased protein manipulation, flexibility in reagent use, and virtually lossless processing. Addressing these needs, the single-pot, solid-phase-enhanced sample-preparation (SP3) technology is a paramagnetic bead-based approach for rapid, robust, and efficient processing of protein samples for proteomic analysis. SP3 uses a hydrophilic interaction mechanism for exchange or removal of components that are commonly used to facilitate cell or tissue lysis, protein solubilization, and enzymatic digestion (e.g., detergents, chaotropes, salts, buffers, acids, and solvents) before downstream proteomic analysis. The SP3 protocol consists of nonselective protein binding and rinsing steps that are enabled through the use of ethanol-driven solvation capture on the surface of hydrophilic beads, and elution of purified material in aqueous conditions. In contrast to alternative approaches, SP3 combines compatibility with a substantial collection of solution additives with virtually lossless and unbiased recovery of proteins independent of input quantity, all in a simplified single-tube protocol. The SP3 protocol is simple and efficient, and can be easily completed by a standard user in ~30 min, including reagent preparation. As a result of these properties, SP3 has successfully been used to facilitate examination of a broad range of sample types spanning simple and complex protein mixtures in large and very small amounts, across numerous organisms. This work describes the steps and extensive considerations involved in performing SP3 in bottom-up proteomics, using a simplified protein cleanup scenario for illustration.
Collapse
|
9
|
Reducing Complexity? Cysteine Reduction and S-Alkylation in Proteomic Workflows: Practical Considerations. Methods Mol Biol 2019; 1977:83-97. [PMID: 30980324 DOI: 10.1007/978-1-4939-9232-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reduction and alkylation are common processing steps in sample preparation for qualitative and quantitative proteomic analyses. In principle, these steps mitigate the limitations resulting from the presence of disulfide bridges. There has been recurring debate in the proteomics community around their use, with concern over negative impacts that result from overalkylation (off-target, non-thiol sites) or incomplete reduction and/or S-alkylation of cysteine. This chapter integrates findings from a number of studies on different reduction and alkylation strategies, to guide users in experimental design for their optimal use in proteomic workflows.
Collapse
|
10
|
Giambruno R, Mihailovich M, Bonaldi T. Mass Spectrometry-Based Proteomics to Unveil the Non-coding RNA World. Front Mol Biosci 2018; 5:90. [PMID: 30467545 PMCID: PMC6236024 DOI: 10.3389/fmolb.2018.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/15/2018] [Indexed: 01/03/2023] Open
Abstract
The interaction between non-coding RNAs (ncRNAs) and proteins is crucial for the stability, localization and function of the different classes of ncRNAs. Although ncRNAs, when embedded in various ribonucleoprotein (RNP) complexes, control the fundamental processes of gene expression, their biological functions and mechanisms of action are still largely unexplored. Mass Spectrometry (MS)-based proteomics has emerged as powerful tool to study the ncRNA world: on the one hand, by identifying the proteins interacting with distinct ncRNAs; on the other hand, by measuring the impact of ncRNAs on global protein levels. Here, we will first provide a concise overview on the basic principles of MS-based proteomics for systematic protein identification and quantification; then, we will recapitulate the main approaches that have been implemented for the screening of ncRNA interactors and the dissection of ncRNA-protein complex composition. Finally, we will describe examples of various proteomics strategies developed to characterize the effect of ncRNAs on gene expression, with a focus on the systematic identification of microRNA (miRNA) targets.
Collapse
Affiliation(s)
| | | | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
11
|
HaileMariam M, Eguez RV, Singh H, Bekele S, Ameni G, Pieper R, Yu Y. S-Trap, an Ultrafast Sample-Preparation Approach for Shotgun Proteomics. J Proteome Res 2018; 17:2917-2924. [PMID: 30114372 DOI: 10.1021/acs.jproteome.8b00505] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The success of shotgun proteomic analysis depends largely on how samples are prepared. Current approaches (such as those that are gel-, solution-, or filter-based), although being extensively employed in the field, are time-consuming and less effective with respect to the repetitive sample processing, recovery, and overall yield. As an alternative, the suspension trapping (S-Trap) filter has been commercially available very recently in the format of a single or 96-well filter plate. In contrast to the conventional filter-aided sample preparation (FASP) approach, which utilizes a molecular weight cut-off (MWCO) membrane as the filter and requires hours of processing before digestion-ready proteins can be obtained, the S-Trap employs a three-dimensional porous material as filter media and traps particulate protein suspensions with the subsequent depletion of interfering substances and in-filter digestion. Due to the large (submicron) pore size, each centrifugation cycle of the S-Trap filter only takes 1 min, which significantly reduces the total processing time from approximately 3 h by FASP to less than 15 min, suggesting an ultrafast sample-preparation approach for shotgun proteomics. Here, we comprehensively evaluate the performance of the individual S-Trap filter and 96-well filter plate in the context of global protein identification and quantitation using whole-cell lysate and clinically relevant sputum samples.
Collapse
Affiliation(s)
- Milkessa HaileMariam
- J. Craig Venter Institute , 9605 Medical Center Drive , Rockville , Maryland 20850 , United States.,Aklilu Lemma Institute of Pathobiology , Addis Ababa University , Addis Ababa , Ethiopia
| | - Rodrigo Vargas Eguez
- J. Craig Venter Institute , 9605 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Harinder Singh
- J. Craig Venter Institute , 9605 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Shiferaw Bekele
- J. Craig Venter Institute , 9605 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology , Addis Ababa University , Addis Ababa , Ethiopia
| | - Rembert Pieper
- J. Craig Venter Institute , 9605 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Yanbao Yu
- J. Craig Venter Institute , 9605 Medical Center Drive , Rockville , Maryland 20850 , United States
| |
Collapse
|
12
|
Navarrete-Perea J, Yu Q, Gygi SP, Paulo JA. Streamlined Tandem Mass Tag (SL-TMT) Protocol: An Efficient Strategy for Quantitative (Phospho)proteome Profiling Using Tandem Mass Tag-Synchronous Precursor Selection-MS3. J Proteome Res 2018; 17:2226-2236. [PMID: 29734811 DOI: 10.1021/acs.jproteome.8b00217] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry (MS) coupled toisobaric labeling has developed rapidly into a powerful strategy for high-throughput protein quantification. Sample multiplexing and exceptional sensitivity allow for the quantification of tens of thousands of peptides and, by inference, thousands of proteins from multiple samples in a single MS experiment. Accurate quantification demands a consistent and robust sample-preparation strategy. Here, we present a detailed workflow for SPS-MS3-based quantitative abundance profiling of tandem mass tag (TMT)-labeled proteins and phosphopeptides that we have named the streamlined (SL)-TMT protocol. We describe a universally applicable strategy that requires minimal individual sample processing and permits the seamless addition of a phosphopeptide enrichment step ("mini-phos") with little deviation from the deep proteome analysis. To showcase our workflow, we profile the proteome of wild-type Saccharomyces cerevisiae yeast grown with either glucose or pyruvate as the carbon source. Here, we have established a streamlined TMT protocol that enables deep proteome and medium-scale phosphoproteome analysis.
Collapse
Affiliation(s)
- José Navarrete-Perea
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Qing Yu
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Steven P Gygi
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Joao A Paulo
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
13
|
Moggridge S, Sorensen PH, Morin GB, Hughes CS. Extending the Compatibility of the SP3 Paramagnetic Bead Processing Approach for Proteomics. J Proteome Res 2018; 17:1730-1740. [PMID: 29565595 DOI: 10.1021/acs.jproteome.7b00913] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The diversity in protein and peptide biochemistry necessitates robust protocols and reagents for efficiently handling and enriching these molecules prior to analysis with mass spectrometry (MS) or other techniques. Further exploration of the paramagnetic bead-based approach, single-pot solid-phase-enhanced sample preparation (SP3), is carried out toward updating and extending previously described conditions and experimental workflows. The SP3 approach was tested in a wide range of experimental scenarios, including (1) binding solvents (acetonitrile, ethanol, isopropanol, acetone), (2) binding pH (acidic vs neutral), (3) solvent/lysate ratios (50-200%, v/v), (4) mixing and rinsing conditions (on-rack vs off-rack rinsing), (5) Enrichment of nondenatured proteins, and (6) capture of individual proteins from noncomplex mixtures. These results highlight the robust handling of proteins in a broad set of scenarios while also enabling the development of a modified SP3 workflow that offers extended compatibility. The modified SP3 approach is used in quantitative in-depth proteome analyses to compare it with commercial paramagnetic bead-based HILIC methods (MagReSyn) and across multiple binding conditions (e.g., pH and solvent during binding). Together, these data reveal the extensive quantitative coverage of the proteome possible with SP3 independent of the binding approach utilized. The results further establish the utility of SP3 for the unbiased handling of peptides and proteins for proteomic applications.
Collapse
Affiliation(s)
- Sophie Moggridge
- Canada's Michael Smith Genome Sciences Centre , British Columbia Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada.,Department of Biochemistry and Microbiology , University of Victoria , Victoria , British Columbia V8P 3E6 , Canada
| | - Poul H Sorensen
- Department of Molecular Oncology , British Columbia Cancer Research Centre , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre , British Columbia Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada.,Department of Medical Genetics , University of British Columbia , Vancouver , British Columbia V6H 3N1 , Canada
| | - Christopher S Hughes
- Canada's Michael Smith Genome Sciences Centre , British Columbia Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| |
Collapse
|