1
|
Kumaravel N, Ebinezer LB, Ashwin NMR, Franchin C, Battisti I, Carletti P, Ramesh Sundar A, Masi A, Malathi P, Viswanathan R, Arrigoni G. Comparative proteomics of sugarcane smut fungus - Sporisorium scitamineum unravels dynamic proteomic alterations during the dimorphic transition. J Proteomics 2024; 304:105230. [PMID: 38901800 DOI: 10.1016/j.jprot.2024.105230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Life cycle of the dimorphic sugarcane smut fungi, Sporisorium scitamineum, involves recognition and mating of compatible saprophytic yeast-like haploid sporidia (MAT-1 and MAT-2) that upon fusion, develop into infective dikaryotic mycelia. Although the dimorphic transition is intrinsically linked with the pathogenicity and virulence of S. scitamineum, it has never been studied using a proteomic approach. In the present study, an iTRAQ-based comparative proteomic analysis of three distinct stages was carried out. The stages were: the dimorphic transition period - haploid sporidial stage (MAT-1 and MAT-2); the transition phase (24 h post co-culturing (hpc)) and the dikaryotic mycelial stage (48 hpc). Functional categorization of differentially abundant proteins showed that the most altered biological processes were energy production, primary metabolism, especially, carbohydrate, amino acid, fatty acid, followed by translation, post-translation and protein turnover. Several differentially abundant proteins (DAPs), especially in the dikaryotic mycelial stage were predicted as effectors. Taken together, key molecular mechanisms underpinning the dimorphic transition in S. scitamineum at the proteome level were highlighted. The catalogue of stage-specific and dimorphic transition-associated-proteins and potential effectors identified herein represents a list of potential candidates for defective mutant screening to elucidate their functional role in the dimorphic transition and pathogenicity in S. scitamineum. BIOLOGICAL SIGNIFICANCE: Being the first comparative proteomics analysis of S. scitamineum, this study comprehensively examined three pivotal life cycle stages of the pathogen: the non-pathogenic haploid phase, the transition phase, and the pathogenic dikaryotic mycelial stage. While previous studies have reported the sugarcane and S. scitamineum interactions, this study endeavored to specifically identify the proteins responsible for pathogenicity. By analyzing the proteomic alterations between the haploid and dikaryotic mycelial phases, the study revealed significant changes in metabolic pathway-associated proteins linked to energy production, notably oxidative phosphorylation, and the citrate cycle. Furthermore, this study successfully identified key metabolic pathways that undergo reprogramming during the transition from the non-pathogenic to the pathogenic stage. The study also deciphered the underlying mechanisms driving the morphological and physiological alterations crucial for the S. scitamineum virulence. By studying its life cycle stages, identifying the key metabolic pathways and stage-specific proteins, it provides unprecedented insights into the pathogenicity and potential avenues for intervention. As proteomics continues to advance, such studies pave the way for a deeper understanding of plant-pathogen interactions and the development of innovative strategies to mitigate the impact of devastating pathogens like S. scitamineum.
Collapse
Affiliation(s)
- Nalayeni Kumaravel
- Division of Crop Protection, Indian Council of Agricultural Research - Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India.
| | - Leonard Barnabas Ebinezer
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, viale dell'Università, 16, 35020 Padova, Italy.
| | - N M R Ashwin
- Division of Crop Protection, Indian Council of Agricultural Research - Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India; Biochemical Sciences Division, Council of Scientific and Industrial Research - National Chemical Laboratory, Pune 411008, Maharashtra, India.
| | - Cinzia Franchin
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy.
| | - Ilaria Battisti
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, viale dell'Università, 16, 35020 Padova, Italy.
| | - Paolo Carletti
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, viale dell'Università, 16, 35020 Padova, Italy.
| | - Amalraj Ramesh Sundar
- Division of Crop Protection, Indian Council of Agricultural Research - Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India.
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, viale dell'Università, 16, 35020 Padova, Italy.
| | - Palaniyandi Malathi
- Division of Crop Protection, Indian Council of Agricultural Research - Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India.
| | - Rasappa Viswanathan
- Division of Crop Protection, Indian Council of Agricultural Research - Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India; Indian Council of Agricultural Research - Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh 226002, India.
| | - Giorgio Arrigoni
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
2
|
Masanta S, Wiesyk A, Panja C, Pilch S, Ciesla J, Sipko M, De A, Enkhbaatar T, Maslanka R, Skoneczna A, Kucharczyk R. Fmp40 ampylase regulates cell survival upon oxidative stress by controlling Prx1 and Trx3 oxidation. Redox Biol 2024; 73:103201. [PMID: 38795545 PMCID: PMC11140801 DOI: 10.1016/j.redox.2024.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024] Open
Abstract
Reactive oxygen species (ROS), play important roles in cellular signaling, nonetheless are toxic at higher concentrations. Cells have many interconnected, overlapped or backup systems to neutralize ROS, but their regulatory mechanisms remain poorly understood. Here, we reveal an essential role for mitochondrial AMPylase Fmp40 from budding yeast in regulating the redox states of the mitochondrial 1-Cys peroxiredoxin Prx1, which is the only protein shown to neutralize H2O2 with the oxidation of the mitochondrial glutathione and the thioredoxin Trx3, directly involved in the reduction of Prx1. Deletion of FMP40 impacts a cellular response to H2O2 treatment that leads to programmed cell death (PCD) induction and an adaptive response involving up or down regulation of genes encoding, among others the catalase Cta1, PCD inducing factor Aif1, and mitochondrial redoxins Trx3 and Grx2. This ultimately perturbs the reduced glutathione and NADPH cellular pools. We further demonstrated that Fmp40 AMPylates Prx1, Trx3, and Grx2 in vitro and interacts with Trx3 in vivo. AMPylation of the threonine residue 66 in Trx3 is essential for this protein's proper endogenous level and its precursor forms' maturation under oxidative stress conditions. Additionally, we showed the Grx2 involvement in the reduction of Trx3 in vivo. Taken together, Fmp40, through control of the reduction of mitochondrial redoxins, regulates the hydrogen peroxide, GSH and NADPH signaling influencing the yeast cell survival.
Collapse
Affiliation(s)
- Suchismita Masanta
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Aneta Wiesyk
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Sylwia Pilch
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Jaroslaw Ciesla
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Marta Sipko
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Abhipsita De
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland.
| |
Collapse
|
3
|
Sun Y, Liu T, Nie J, Yan J, Tang J, Jin K, Li C, Li H, Liu Y, Bai Z. Continuous catalytic production of 1,3-dihydroxyacetone: Sustainable approach combining perfusion cultures and immobilized cells. BIORESOURCE TECHNOLOGY 2024; 401:130734. [PMID: 38670288 DOI: 10.1016/j.biortech.2024.130734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Currently, the predominant method for the industrial production of 1,3-dihydroxyacetone (DHA) from glycerol involves fed-batch fermentation. However, previous research has revealed that in the biocatalytic synthesis of DHA from glycerol, when the DHA concentration exceeded 50 g·L-1, it significantly inhibited microbial growth and metabolism, posing a challenge in maintaining prolonged and efficient catalytic production of DHA. In this study, a new integrated continuous production and synchronous separation (ICSS) system was constructed using hollow fiber columns and perfusion culture technology. Additionally, a cell reactivation technique was implemented to extend the biocatalytic ability of cells. Compared with fed-batch fermentation, the ICSS system operated for 360 h, yielding a total DHA of 1237.8 ± 15.8 g. The glycerol conversion rate reached 97.7 %, with a productivity of 3.44 g·L-1·h-1, representing 485.0 % increase in DHA production. ICSS system exhibited strong operational characteristics and excellent performance, indicating significant potential for applications in industrial bioprocesses.
Collapse
Affiliation(s)
- Yang Sun
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Tang Liu
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Jianqi Nie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jie Yan
- School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Jiacheng Tang
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Kuiqi Jin
- Chengdu Yingde Biological Pharmaceutical Equipment Co., Ltd.,Chengdu 610000,China.
| | - Chunyang Li
- Chengdu Yingde Biological Pharmaceutical Equipment Co., Ltd.,Chengdu 610000,China.
| | - Hua Li
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Yupeng Liu
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Karagianni C, Bazopoulou D. Redox regulation in lifespan determination. J Biol Chem 2024; 300:105761. [PMID: 38367668 PMCID: PMC10965828 DOI: 10.1016/j.jbc.2024.105761] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
One of the major challenges that remain in the fields of aging and lifespan determination concerns the precise roles that reactive oxygen species (ROS) play in these processes. ROS, including superoxide and hydrogen peroxide, are constantly generated as byproducts of aerobic metabolism, as well as in response to endogenous and exogenous cues. While ROS accumulation and oxidative damage were long considered to constitute some of the main causes of age-associated decline, more recent studies reveal a signaling role in the aging process. In fact, accumulation of ROS, in a spatiotemporal manner, can trigger beneficial cellular responses that promote longevity and healthy aging. In this review, we discuss the importance of timing and compartmentalization of external and internal ROS perturbations in organismal lifespan and the role of redox regulated pathways.
Collapse
|
5
|
Yang Q, Zhang X, Solairaj D, Fu Y, Zhang H. Molecular Response of Meyerozyma guilliermondii to Patulin: Transcriptomic-Based Analysis. J Fungi (Basel) 2023; 9:jof9050538. [PMID: 37233249 DOI: 10.3390/jof9050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Patulin (PAT), mainly produced by Penicillium expansum, is a potential threat to health. In recent years, PAT removal using antagonistic yeasts has become a hot research topic. Meyerozyma guilliermondii, isolated by our group, produced antagonistic effects against the postharvest diseases of pears and could degrade PAT in vivo or in vitro. However, the molecular responses of M. guilliermondii over PAT exposure and its detoxification enzymes are not apparent. In this study, transcriptomics is used to unveil the molecular responses of M. guilliermondii on PAT exposure and the enzymes involved in PAT degradation. The functional enrichment of differentially expressed genes indicated that the molecular response mainly includes the up-regulated expression of genes related to resistance and drug-resistance, intracellular transport, growth and reproduction, transcription, DNA damage repair, antioxidant stress to avoid cell damage, and PAT detoxification genes such as short-chain dehydrogenase/reductases. This study elucidates the possible molecular responses and PAT detoxification mechanism of M. guilliermondii, which could be helpful to further accelerate the commercial application of antagonistic yeast toward mycotoxin decontamination.
Collapse
Affiliation(s)
- Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dhanasekaran Solairaj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yu Fu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Tsitsipatis D, Martindale JL, Ubaida‐Mohien C, Lyashkov A, Yanai H, Kashyap A, Shin CH, Herman AB, Ji E, Yang J, Munk R, Dunn C, Lukyanenko Y, Yang X, Chia CW, Karikkineth AC, Zukley L, D’Agostino J, Kaileh M, Cui C, Beerman I, Ferrucci L, Gorospe M. Proteomes of primary skin fibroblasts from healthy individuals reveal altered cell responses across the life span. Aging Cell 2022; 21:e13609. [PMID: 35429111 PMCID: PMC9124301 DOI: 10.1111/acel.13609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Changes in the proteome of different human tissues with advancing age are poorly characterized. Here, we studied the proteins present in primary skin fibroblasts collected from 82 healthy individuals across a wide age spectrum (22-89 years old) who participated in the GESTALT (Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing) study of the National Institute on Aging, NIH. Proteins were extracted from lysed fibroblasts and subjected to liquid chromatography-mass spectrometry analysis, and the expression levels of 9341 proteins were analyzed using linear regression models. We identified key pathways associated with skin fibroblast aging, including autophagy, scavenging of reactive oxygen species (ROS), ribosome biogenesis, DNA replication, and DNA repair. Changes in these prominent pathways were corroborated using molecular and cell culture approaches. Our study establishes a framework of the global proteome governing skin fibroblast aging and points to possible biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Dimitrios Tsitsipatis
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Jennifer L. Martindale
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Ceereena Ubaida‐Mohien
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Alexey Lyashkov
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Hagai Yanai
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Amogh Kashyap
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Chang Hoon Shin
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Allison B. Herman
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Eunbyul Ji
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Jen‐Hao Yang
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Rachel Munk
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Christopher Dunn
- Laboratory of Molecular Biology and ImmunologyNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Yevgeniya Lukyanenko
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Xiaoling Yang
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Chee W. Chia
- Clinical Research CoreNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Ajoy C. Karikkineth
- Clinical Research CoreNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Linda Zukley
- Clinical Research CoreNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Jarod D’Agostino
- Clinical Research CoreNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Mary Kaileh
- Laboratory of Molecular Biology and ImmunologyNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Chang‐Yi Cui
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Isabel Beerman
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Luigi Ferrucci
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Myriam Gorospe
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| |
Collapse
|
7
|
Navarro MV, de Barros YN, Segura WD, Chaves AFA, Jannuzzi GP, Ferreira KS, Xander P, Batista WL. The Role of Dimorphism Regulating Histidine Kinase (Drk1) in the Pathogenic Fungus Paracoccidioides brasiliensis Cell Wall. J Fungi (Basel) 2021; 7:jof7121014. [PMID: 34946996 PMCID: PMC8707131 DOI: 10.3390/jof7121014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM), an endemic disease in Latin America with a high incidence in Brazil. This pathogen presents as infective mycelium at 25 °C in the soil, reverting to its pathogenic form when inhaled by the mammalian host (37 °C). Among these dimorphic fungal species, dimorphism regulating histidine kinase (Drk1) plays an essential role in the morphological transition. These kinases are present in bacteria and fungi but absent in mammalian cells and are important virulence and cellular survival regulators. Hence, the purpose of this study was to investigate the role of PbDrk1 in the cell wall modulation of P. brasiliensis. We observed that PbDrk1 participates in fungal resistance to different cell wall-disturbing agents by reducing viability after treatment with iDrk1. To verify the role of PbDRK1 in cell wall morphogenesis, qPCR results showed that samples previously exposed to iDrk1 presented higher expression levels of several genes related to cell wall modulation. One of them was FKS1, a β-glucan synthase that showed a 3.6-fold increase. Furthermore, confocal microscopy analysis and flow cytometry showed higher β-glucan exposure on the cell surface of P. brasiliensis after incubation with iDrk1. Accordingly, through phagocytosis assays, a significantly higher phagocytic index was observed in yeasts treated with iDrk1 than the control group, demonstrating the role of PbDrk1 in cell wall modulation, which then becomes a relevant target to be investigated. In parallel, the immune response profile showed increased levels of proinflammatory cytokines. Finally, our data strongly suggest that PbDrk1 modulates cell wall component expression, among which we can identify β-glucan. Understanding this signalling pathway may be of great value for identifying targets of antifungal molecular activity since HKs are not present in mammals.
Collapse
Affiliation(s)
- Marina Valente Navarro
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-062, Brazil;
| | - Yasmin Nascimento de Barros
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Wilson Dias Segura
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | | | - Grasielle Pereira Jannuzzi
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Karen Spadari Ferreira
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Patrícia Xander
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Wagner Luiz Batista
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-062, Brazil;
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
- Correspondence: ; Tel.: +55-11-3319-3594; Fax: +55-11-3319-3300
| |
Collapse
|
8
|
Changes in the distribution of fitness effects and adaptive mutational spectra following a single first step towards adaptation. Nat Commun 2021; 12:5193. [PMID: 34465770 PMCID: PMC8408183 DOI: 10.1038/s41467-021-25440-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/11/2021] [Indexed: 01/17/2023] Open
Abstract
Historical contingency and diminishing returns epistasis have been typically studied for relatively divergent genotypes and/or over long evolutionary timescales. Here, we use Saccharomyces cerevisiae to study the extent of diminishing returns and the changes in the adaptive mutational spectra following a single first adaptive mutational step. We further evolve three clones that arose under identical conditions from a common ancestor. We follow their evolutionary dynamics by lineage tracking and determine adaptive outcomes using fitness assays and whole genome sequencing. We find that diminishing returns manifests as smaller fitness gains during the 2nd step of adaptation compared to the 1st step, mainly due to a compressed distribution of fitness effects. We also find that the beneficial mutational spectra for the 2nd adaptive step are contingent on the 1st step, as we see both shared and diverging adaptive strategies. Finally, we find that adaptive loss-of-function mutations, such as nonsense and frameshift mutations, are less common in the second step of adaptation than in the first step. Analyses of both natural and experimental evolution suggest that adaptation depends on the evolutionary past and adaptive potential decreases over time. Here, by tracking yeast adaptation with DNA barcoding, the authors show that such evolutionary phenomena can be observed even after a single adaptive step.
Collapse
|
9
|
Liu Y, Luo C, Li T, Zhang W, Zong Z, Liu X, Deng H. Reduced Nicotinamide Mononucleotide (NMNH) Potently Enhances NAD + and Suppresses Glycolysis, the TCA Cycle, and Cell Growth. J Proteome Res 2021; 20:2596-2606. [PMID: 33793246 DOI: 10.1021/acs.jproteome.0c01037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Decreased cellular NAD+ levels are causally linked to aging and aging-associated diseases. NAD+ precursors in oxidized form such as nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) have gained much attention and been well studied for their ability to restore NAD+ levels in model organisms. Less is known about whether NAD+ precursors in reduced form can also efficiently increase the tissue and cellular NAD+ levels and have different effects on cellular processes than NMN or NR. In the present study, we developed a chemical method to produce dihydronicotinamide mononucleotide (NMNH), which is the reduced form of NMN. We demonstrated that NMNH was a better NAD+ enhancer than NMN both in vitro and in vivo, mediated by nicotinamide mononucleotide adenylyltransferase (NMNAT). Additionally, NMNH increased the reduced NAD (NADH) levels in cells and in mouse livers. Metabolomic analysis revealed that NMNH inhibited glycolysis and the TCA cycle. In vitro experiments demonstrated that NMNH induced cell cycle arrest and suppressed cell growth. Nevertheless, NMNH treatment did not cause an observable difference in mouse weight. Taken together, our work demonstrates that NMNH is a potent NAD+ enhancer and suppresses glycolysis, the TCA cycle, and cell growth.
Collapse
Affiliation(s)
- Yan Liu
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,MOE Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chengting Luo
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,MOE Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ting Li
- MOE Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenhao Zhang
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhaoyun Zong
- MOE Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohui Liu
- MOE Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,National Center for Protein Science, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,National Center for Protein Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Shields HJ, Traa A, Van Raamsdonk JM. Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies. Front Cell Dev Biol 2021; 9:628157. [PMID: 33644065 PMCID: PMC7905231 DOI: 10.3389/fcell.2021.628157] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is the greatest risk factor for a multitude of diseases including cardiovascular disease, neurodegeneration and cancer. Despite decades of research dedicated to understanding aging, the mechanisms underlying the aging process remain incompletely understood. The widely-accepted free radical theory of aging (FRTA) proposes that the accumulation of oxidative damage caused by reactive oxygen species (ROS) is one of the primary causes of aging. To define the relationship between ROS and aging, there have been two main approaches: comparative studies that measure outcomes related to ROS across species with different lifespans, and experimental studies that modulate ROS levels within a single species using either a genetic or pharmacologic approach. Comparative studies have shown that levels of ROS and oxidative damage are inversely correlated with lifespan. While these studies in general support the FRTA, this type of experiment can only demonstrate correlation, not causation. Experimental studies involving the manipulation of ROS levels in model organisms have generally shown that interventions that increase ROS tend to decrease lifespan, while interventions that decrease ROS tend to increase lifespan. However, there are also multiple examples in which the opposite is observed: increasing ROS levels results in extended longevity, and decreasing ROS levels results in shortened lifespan. While these studies contradict the predictions of the FRTA, these experiments have been performed in a very limited number of species, all of which have a relatively short lifespan. Overall, the data suggest that the relationship between ROS and lifespan is complex, and that ROS can have both beneficial or detrimental effects on longevity depending on the species and conditions. Accordingly, the relationship between ROS and aging is difficult to generalize across the tree of life.
Collapse
Affiliation(s)
- Hazel J Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Genetics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Li C, Xin H, Shi Y, Mu J. Glutaredoxin 2 protects cardiomyocytes from hypoxia/reoxygenation-induced injury by suppressing apoptosis, oxidative stress, and inflammation via enhancing Nrf2 signaling. Int Immunopharmacol 2021; 94:107428. [PMID: 33581580 DOI: 10.1016/j.intimp.2021.107428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 01/14/2023]
Abstract
Glutaredoxin 2 (GRX2) plays a cytoprotective role under various pathological conditions. However, whether GRX2 plays a role during myocardial ischemia-reperfusion injury has not been fully elucidated. In this work, we aimed to explore the detailed role and mechanism of GRX2 in modulating hypoxia/reoxygenation (H/R)-induced cardiac injury in vitro. H/R treatment resulted in a significant increase in GRX2 expression in cardiomyocytes. GRX2 knockdown enhanced the sensitivity of cardiomyocytes to H/R-induced apoptosis, oxidative stress, and inflammation, while GRX2 up-regulation exerted a cardioprotective role in H/R-injured cardiomyocytes. Further investigations revealed that GRX2 up-regulation enhanced the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling associated with upregulation of the phosphorylation of Akt and glycogen synthase kinase-3β (GSK-3β). Akt inhibition markedly abolished GRX2-mediated activation of Nrf2, while GSK-3β inhibition reversed GRX2-knockdown-mediated inhibition of Nrf2. In addition, Nrf2 inhibition markedly abrogated GRX2-mediated protective effects against H/R-induced apoptosis, oxidative stress and inflammation. Overall, this work indicates that GRX2 protects cardiomyocytes from H/R-induced apoptosis, oxidative stress, and inflammation by enhancing Nrf2 activation via modulation of the Akt/GSK-3β axis. Our study highlights a potential relevance of GRX2 in myocardial ischemia-reperfusion injury; it may serve as an attractive target for cardioprotection.
Collapse
Affiliation(s)
- Chengliang Li
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of General Practice, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Hong Xin
- Department of Cardiology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Yingpeng Shi
- Department of General Practice, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Jianjun Mu
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
12
|
Yang Y, Liao Z, Xiao Q. Metformin ameliorates skeletal muscle atrophy in Grx1 KO mice by regulating intramuscular lipid accumulation and glucose utilization. Biochem Biophys Res Commun 2020; 533:1226-1232. [PMID: 33069361 DOI: 10.1016/j.bbrc.2020.09.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 12/27/2022]
Abstract
Skeletal muscle is the largest tissue in the body, and plays a remarkable role in energy and metabolic homeostasis. Disorder in lipid metabolism and glucose utilization could impair the quality and function of skeletal muscle. Glutaredoxin-1 (Grx1) acts as a vital metabolic regulator of redox homeostasis. Recent studies have shown that Grx1 regulates hepatic lipid metabolism. The skeletal muscle also contains abundant Grx1, but the role of Grx1 in skeletal muscle remains unknown. Therefore, we investigated the effect of Grx1 on skeletal muscle. In this study, we found that Grx1-deficient mice (Grx1-/-) spontaneously developed muscle atrophy by 3 months of age. And the p-AMPK activity and Sirt1 activity were inhibited in Grx1-/- mice, which led to intramuscular lipid deposition and glucose utilization disorder in skeletal muscle. However, intraperitoneal injection of metformin for 15 consecutive days ameliorated skeletal muscle atrophy caused by Grx1 deficiency to a certain extent. Taken together, these findings indicate that Grx1 deficiency might induce skeletal muscle atrophy by regulating the intramuscular lipid deposition and glucose utilization, which could be attenuated by metformin. Therefore, the expression or activity of Grx1 may be a pharmacological approach to ameliorate muscle atrophy diseases, such as sarcopenia.
Collapse
Affiliation(s)
- Yunfei Yang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhiyin Liao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
13
|
Xiao Y, Guo J, Zhu H, Muhammad A, Deng H, Hu Z, Wu Q. Inhibition of glucose assimilation in Auxenochlorella protothecoides by light. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:146. [PMID: 32831906 PMCID: PMC7437033 DOI: 10.1186/s13068-020-01787-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/12/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The yield of microalgae biomass is the key to affect the accumulation of fatty acids. A few microalgae can assimilate organic carbon to improve biomass yield. In mixotrophic cultivation, microalgae can use organic carbon source and light energy simultaneously. The preference of the main energy source by microalgae determines the biomass yield. Auxenochlorella protothecoides is an oleaginous mixotrophic microalga that can efficiently assimilate glucose and accumulate a large amount of biomass and fatty acids. The current study focused on the effect of light on the growth and glucose assimilation of A. protothecoides. RESULTS In this study, we found that the uptake and metabolism of glucose in A. protothecoides could be inhibited by light, resulting in a reduction of biomass growth and lipid accumulation. We employed comparative proteomics to study the influence of light on the regulation of glucose assimilation in A. protothecoides. Proteomics revealed that proteins involving in gene translation and photosynthesis system were up-regulated in the light, such as ribulose-phosphate 3-epimerase and phosphoribulokinase. Calvin cycle-related proteins were also up-regulated, suggesting that light may inhibit glucose metabolism by enhancing the production of glyceraldehyde-3-phosphate (G3P) in the Calvin cycle. In addition, the redox homeostasis-related proteins such as thioredoxin reductase were up-regulated in the light, indicating that light may regulate glucose uptake by changing the redox balance. Moreover, the increase of NADH levels and redox potential of the medium under illumination might inhibit the activity of the glucose transport system and subsequently reduce glucose uptake. CONCLUSIONS A theoretical model of how glucose assimilation in A. protothecoides is negatively influenced by light was proposed, which will facilitate further studies on the complex mechanisms underlying the transition from autotrophy to heterotrophy for improving biomass accumulation.
Collapse
Affiliation(s)
- Yibo Xiao
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Jianying Guo
- Key Laboratory of Industrial Biocatalysis of the Ministry of Education and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Huachang Zhu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Anwar Muhammad
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Haiteng Deng
- Key Laboratory of Industrial Biocatalysis of the Ministry of Education and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Qingyu Wu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Key Laboratory of Industrial Biocatalysis of the Ministry of Education and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 People’s Republic of China
| |
Collapse
|
14
|
Wen J, Li X, Zheng S, Xiao Y. Upregulation of Glutaredoxin 2 alleviates oxygen-glucose deprivation/reoxygenation-induced apoptosis and ROS production in neurons by enhancing Nrf2 signaling via modulation of GSK-3β. Brain Res 2020; 1745:146946. [PMID: 32522629 DOI: 10.1016/j.brainres.2020.146946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/12/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
Glutaredoxin 2 (GRX2) is an antioxidative protein that exerts a key role in various pathological processes. However, whether GRX2 participates in modulating the oxidative stress during cerebral ischemia/reperfusion, injury is undermined. This study aimed to determine the potential role of GRX2 in regulating oxidative stress in cultured neurons induced by oxygen-glucose deprivation/reoxygenation (OGD/R), a cellular model for study of cerebral ischemia/reperfusion injury in vitro. Here, we showed that GRX2 expression was decreased in neurons subjected to OGD/R exposure. The upregulation of GRX2 markedly improved the viability of OGD/R-exposed neurons and caused a marked reduction in OGD/R-induced apoptosis and reactive oxygen species (ROS) production. On the contrary, depletion of GRX2 exacerbated the OGD/R-induced apoptosis and ROS production in cultured neurons. Moreover, GRX2 upregulation increased nuclear expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and enhanced the activation of Nrf2/ARE signaling associated with modulation of glycogen synthase kinase-3β (GSK-3β) inhibition. Notably, inhibition of Nrf2 markedly abrogated GRX2-mediated protection against OGD/R-induced apoptosis and oxidative stress. Overall, these findings elucidate that GRX2 plays an essential role in regulating the protection against OGD/R-induced apoptosis and oxidative stress in neurons associated with its ability to enhance the activation of Nrf2 via modulation of GSK-3β. Our study indicates that GRX2 may play a key role in modulating neuronal apoptosis and oxidative stress induced by cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jian Wen
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xin Li
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Shaohua Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Ying Xiao
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
15
|
Quantitative proteomics to study aging in rabbit liver. Mech Ageing Dev 2020; 187:111227. [PMID: 32126221 DOI: 10.1016/j.mad.2020.111227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022]
Abstract
Aging globally effects cellular and organismal metabolism across a range of mammalian species, including humans and rabbits. Rabbits (Oryctolagus cuniculus are an attractive model system of aging due to their genetic similarity with humans and their short lifespans. This model can be used to understand metabolic changes in aging especially in major organs such as liver where we detected pronounced variations in fat metabolism, mitochondrial dysfunction, and protein degradation. Such changes in the liver are consistent across several mammalian species however in rabbits the downstream effects of these changes have not yet been explored. We have applied proteomics to study changes in the liver proteins from young, middle, and old age rabbits using a multiplexing cPILOT strategy. This resulted in the identification of 2,586 liver proteins, among which 45 proteins had significant p < 0.05) changes with aging. Seven proteins were differentially-expressed at all ages and include fatty acid binding protein, aldehyde dehydrogenase, enoyl-CoA hydratase, 3-hydroxyacyl CoA dehydrogenase, apolipoprotein C3, peroxisomal sarcosine oxidase, adhesion G-protein coupled receptor, and glutamate ionotropic receptor kinate. Insights to how alterations in metabolism affect protein expression in liver have been gained and demonstrate the utility of rabbit as a model of aging.
Collapse
|
16
|
Simulating Extracellular Glucose Signals Enhances Xylose Metabolism in Recombinant Saccharomyces cerevisiae. Microorganisms 2020; 8:microorganisms8010100. [PMID: 31936831 PMCID: PMC7022881 DOI: 10.3390/microorganisms8010100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Efficient utilization of both glucose and xylose from lignocellulosic biomass would be economically beneficial for biofuel production. Recombinant Saccharomyces cerevisiae strains with essential genes and metabolic networks for xylose metabolism can ferment xylose; however, the efficiency of xylose fermentation is much lower than that of glucose, the preferred carbon source of yeast. Implications from our previous work suggest that activation of the glucose sensing system may benefit xylose metabolism. Here, we show that deleting cAMP phosphodiesterase genes PDE1 and PDE2 increased PKA activity of strains, and consequently, increased xylose utilization. Compared to the wild type strain, the specific xylose consumption rate (rxylose) of the pde1Δ pde2Δ mutant strains increased by 50%; the specific ethanol-producing rate (rethanol) of the strain increased by 70%. We also show that HXT1 and HXT2 transcription levels slightly increased when xylose was present. We also show that HXT1 and HXT2 transcription levels slightly increased when xylose was present. Deletion of either RGT2 or SNF3 reduced expression of HXT1 in strains cultured in 1 g L−1 xylose, which suggests that xylose can bind both Snf3 and Rgt2 and slightly alter their conformations. Deletion of SNF3 significantly weakened the expression of HXT2 in the yeast cultured in 40 g L−1 xylose, while deletion of RGT2 did not weaken expression of HXT2, suggesting that S. cerevisiae mainly depends on Snf3 to sense a high concentration of xylose (40 g L−1). Finally, we show that deletion of Rgt1, increased rxylose by 24% from that of the control. Our findings indicate how S. cerevisiae may respond to xylose and this study provides novel targets for further engineering of xylose-fermenting strains.
Collapse
|
17
|
Taormina G, Ferrante F, Vieni S, Grassi N, Russo A, Mirisola MG. Longevity: Lesson from Model Organisms. Genes (Basel) 2019; 10:genes10070518. [PMID: 31324014 PMCID: PMC6678192 DOI: 10.3390/genes10070518] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022] Open
Abstract
Research on longevity and healthy aging promises to increase our lifespan and decrease the burden of degenerative diseases with important social and economic effects. Many aging theories have been proposed, and important aging pathways have been discovered. Model organisms have had a crucial role in this process because of their short lifespan, cheap maintenance, and manipulation possibilities. Yeasts, worms, fruit flies, or mammalian models such as mice, monkeys, and recently, dogs, have helped shed light on aging processes. Genes and molecular mechanisms that were found to be critical in simple eukaryotic cells and species have been confirmed in humans mainly by the functional analysis of mammalian orthologues. Here, we review conserved aging mechanisms discovered in different model systems that are implicated in human longevity as well and that could be the target of anti-aging interventions in human.
Collapse
Affiliation(s)
- Giusi Taormina
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Federica Ferrante
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Salvatore Vieni
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Nello Grassi
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Antonio Russo
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Mario G Mirisola
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy.
| |
Collapse
|