1
|
Urasawa T, Kawasaki N. Proteomic Approach Using DIA-MS Identifies Morphogenesis-Associated Proteins during Cardiac Differentiation of Human iPS Cells. ACS OMEGA 2025; 10:344-357. [PMID: 39829588 PMCID: PMC11740111 DOI: 10.1021/acsomega.4c06371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes have potential applications in regenerative medicine. The quality by design (QbD) approach enables the efficiency and quality assurance in the manufacturing of hiPSC-derived products. It requires a molecular understanding of hiPSC differentiation throughout the differentiation process; however, information on cardiac differentiation remains limited. Proteins associated with the early stages of cardiac differentiation would be useful in the cardiomyocyte quality assessment. Here, we performed quantitative proteomics of hiPSC intermediate cells in the early phase of cardiac differentiation to better understand their molecular characteristics. Proteomic profiles suggested that day 5-7 cells were in the morphogenetic stage of cardiac differentiation. Trophoblast glycoprotein (TPBG) was the most up-regulated protein in the morphogenetic stage; it was previously shown to be up-regulated during differentiation into neural stem cells. Proteomics of TPBG-knockdown cells revealed that TPBG is involved in cell proliferation and is related to the cardiomyocyte yield, suggesting that it could be used as a marker in QbD development. Our approach helps us understand the molecular basis of hiPSC differentiation and could be a powerful tool in QbD-based manufacturing.
Collapse
Affiliation(s)
- Takaya Urasawa
- Biopharmaceutical and Regenerative
Sciences, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Nana Kawasaki
- Biopharmaceutical and Regenerative
Sciences, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
2
|
Helsley RN, Zelows MM, Noffsinger VP, Anspach GB, Dharanipragada N, Mead AE, Cobo I, Carter A, Wu Q, Shalaurova I, Saito K, Morganti JM, Gordon SM, Graf GA. Hepatic Inactivation of Carnitine Palmitoyltransferase 1a Lowers Apolipoprotein B Containing Lipoproteins in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628437. [PMID: 39763810 PMCID: PMC11702516 DOI: 10.1101/2024.12.13.628437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Genome- and epigenome-wide association studies have associated variants and methylation status of carnitine palmitoyltransferase 1a (CPT1a) to reductions in very low-density lipoprotein (VLDL) cholesterol and triglyceride levels. We report significant associations between the presence of CPT1a SNPs and reductions in plasma cholesterol, as well as positive associations between hepatic Cpt1a expression and plasma cholesterol levels across inbred mouse strains. Mechanistic studies show that both wild type and human apolipoprotein B100 (apoB)-transgenic mice with liver-specific deletion of Cpt1a (LKO) display lower circulating apoB levels consistent with reduced LDL-cholesterol (LDL-C) and LDL particle number. Despite a reduction in steady-state plasma lipids, VLDL-triglyceride (VLDL-TG) and cholesterol (VLDL-C) secretion rates are increased, suggesting accelerated clearance of apoB-containing lipoproteins (apoB-LPs) in LKO mice. Mechanistic approaches show greater peroxisome proliferator activated receptor α (PPARα) signaling which favors enhanced lipoprotein lipase-mediated metabolism of apoB-LPs, including increases in ApoCII and ApoAIV and reductions in ApoCIII & Angptl3. These studies provide mechanistic insight linking genetic variants and methylation status of CPT1a to reductions in circulating apoB-LPs in humans. HIGHLIGHTS Loss-of-function SNPs in CPT1a associate with reductions in plasma cholesterol in humans Hepatic Cpt1a expression positively associates with plasma cholesterol levels across inbred strains of miceLiver-specific Cpt1a deficiency lowers circulating apoB, plasma cholesterol, LDL-C, and LDL particle numberCpt1a ablation activates PPARα and favors clearance of apoB-containing lipoproteins.
Collapse
|
3
|
Cao Z, Zhu Y, Li Y, Yuan Z, Han B, Guo Y. The mechanical regulatory role of ATP13a3 in osteogenic differentiation of pre-osteoblasts. Adv Med Sci 2024; 69:339-348. [PMID: 39004219 DOI: 10.1016/j.advms.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/24/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE The process of osteogenic differentiation hinges upon the pivotal role of mechanical signals. Previous studies found that mechanical tensile strain of 2500 microstrain (με) at a frequency of 0.5 Hz promoted osteogenesis in vitro. However, the mechanism of the mechanical strain influencing osteogenesis at the cellular and molecular levels are not yet fully understood. This study aimed to explore the mechanism of mechanical strain on osteogenic differentiation of MC3T3-E1 cells. MATERIALS AND METHODS Proteomics analysis was conducted to explore the mechanical strain that significantly impacted the protein expression. Bioinformatics identified important mechanosensitive proteins and the expression of genes was investigated using real-time PCR. The dual-luciferase assay revealed the relationship between the miRNA and its target gene. Overexpression and downexpression of the gene, to explore its role in mechanically induced osteogenic differentiation and transcriptomics, revealed further mechanisms in this process. RESULTS Proteomics and bioinformatics identified an important mechanosensitive lowexpression protein ATP13A3, and the expression of Atp13a3 gene was also reduced. The dual-luciferase assay revealed that microRNA-3070-3p (miR-3070-3p) targeted the Atp13a3 gene. Furthermore, the downexpression of Atp13a3 promoted the expression levels of osteogenic differentiation-related genes and proteins, and this process was probably mediated by the tumor necrosis factor (TNF) signaling pathway. CONCLUSION Atp13a3 responded to mechanical tensile strain to regulate osteogenic differentiation, and the TNF signaling pathway regulated by Atp13a3 was probably involved in this process. These novel insights suggested that Atp13a3 was probably a potential osteogenesis and bone formation regulator.
Collapse
Affiliation(s)
- Zhen Cao
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi, China; Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Yingwen Zhu
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi, China
| | - Yanan Li
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi, China
| | - Zijian Yuan
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi, China
| | - Biao Han
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi, China.
| | - Yong Guo
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi, China.
| |
Collapse
|
4
|
The Modulatory Effects of Fatty Acids on Cancer Progression. Biomedicines 2023; 11:biomedicines11020280. [PMID: 36830818 PMCID: PMC9953116 DOI: 10.3390/biomedicines11020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Cancer is the second leading cause of death worldwide and the global cancer burden rises rapidly. The risk factors for cancer development can often be attributed to lifestyle factors, of which an unhealthy diet is a major contributor. Dietary fat is an important macronutrient and therefore a crucial part of a well-balanced and healthy diet, but it is still unclear which specific fatty acids contribute to a healthy and well-balanced diet in the context of cancer risk and prognosis. In this review, we describe epidemiological evidence on the associations between the intake of different classes of fatty acids and the risk of developing cancer, and we provide preclinical evidence on how specific fatty acids can act on tumor cells, thereby modulating tumor progression and metastasis. Moreover, the pro- and anti-inflammatory effects of each of the different groups of fatty acids will be discussed specifically in the context of inflammation-induced cancer progression and we will highlight challenges as well as opportunities for successful application of fatty acid tailored nutritional interventions in the clinic.
Collapse
|
5
|
Detraux D, Renard P. Succinate as a New Actor in Pluripotency and Early Development? Metabolites 2022; 12:651. [PMID: 35888775 PMCID: PMC9325148 DOI: 10.3390/metabo12070651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
Pluripotent cells have been stabilized from pre- and post-implantation blastocysts, representing respectively naïve and primed stages of embryonic stem cells (ESCs) with distinct epigenetic, metabolic and transcriptomic features. Beside these two well characterized pluripotent stages, several intermediate states have been reported, as well as a small subpopulation of cells that have reacquired features of the 2C-embryo (2C-like cells) in naïve mouse ESC culture. Altogether, these represent a continuum of distinct pluripotency stages, characterized by metabolic transitions, for which we propose a new role for a long-known metabolite: succinate. Mostly seen as the metabolite of the TCA, succinate is also at the crossroad of several mitochondrial biochemical pathways. Its role also extends far beyond the mitochondrion, as it can be secreted, modify proteins by lysine succinylation and inhibit the activity of alpha-ketoglutarate-dependent dioxygenases, such as prolyl hydroxylase (PHDs) or histone and DNA demethylases. When released in the extracellular compartment, succinate can trigger several key transduction pathways after binding to SUCNR1, a G-Protein Coupled Receptor. In this review, we highlight the different intra- and extracellular roles that succinate might play in the fields of early pluripotency and embryo development.
Collapse
Affiliation(s)
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium;
| |
Collapse
|
6
|
Yang Y, Wu S, Zhu Y, Yang J, Liu J. Global Profiling of Lysine Succinylation in Human Lungs. Proteomics 2022; 22:e2100381. [DOI: 10.1002/pmic.202100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ye‐Hong Yang
- State Key Laboratory of Medical Molecular Biology Department of Biochemistry and Molecular Biology Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100005 China
| | - Song‐Feng Wu
- State Key Laboratory of Proteomics Beijing Proteome Research Center National Center for Protein Sciences (Beijing) Institute of Lifeomics Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences Beijing 102206 China
| | - Yun‐Ping Zhu
- State Key Laboratory of Proteomics Beijing Proteome Research Center National Center for Protein Sciences (Beijing) Institute of Lifeomics Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences Beijing 102206 China
| | - Jun‐Tao Yang
- State Key Laboratory of Medical Molecular Biology Department of Biochemistry and Molecular Biology Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100005 China
| | - Jiang‐Feng Liu
- State Key Laboratory of Medical Molecular Biology Department of Biochemistry and Molecular Biology Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100005 China
| |
Collapse
|
7
|
Shi JH, Yang DJ, Jin Q, Cheng N, Shi YB, Bai Y, Yu DS, Guo WZ, Ge GB, Zhang SJ. Cytochrome P450 2E1 predicts liver functional recovery from donation after circulatory death using air-ventilated normothermic machine perfusion. Sci Rep 2022; 12:7446. [PMID: 35523980 PMCID: PMC9076671 DOI: 10.1038/s41598-022-11434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
The optimal oxygen concentration is unclear for normothermic machine perfusion (NMP) of livers from donation after circulatory death (DCD). Our purposes were to investigate the effect of air-ventilated NMP on the DCD liver, analyze the underlying mechanism and select the targets to predict liver functional recovery with NMP. NMP was performed using the NMP system with either air ventilation or oxygen ventilation for 2 h in the rat liver following warm ischemia and cold-storage preservation. Proteomics and metabolomics were used to reveal the significant molecular networks. The bioinformation analysis was validated by administering peroxisome proliferator activator receptor-γ (PPARγ) antagonist and agonist via perfusion circuit in the air-ventilated NMP. Results showed that air-ventilated NMP conferred a better functional recovery and a less inflammatory response in the rat DCD liver; integrated proteomics and metabolomics analysis indicated that intrahepatic docosapentaenoic acid downregulation and upregulation of cytochrome P450 2E1 (CYP2E1) expression and activity were associated with DCD liver functional recovery with air-ventilated NMP; PPARγ antagonist worsened liver function under air-oxygenated NMP whereas PPARγ agonist played the opposite role. In conclusion, air-ventilated NMP confers a better liver function from DCD rats through the DAP-PPARγ-CYP2E1 axis; CYP2E1 activity provides a biomarker of liver functional recovery from DCD.
Collapse
Affiliation(s)
- Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| | - Dong-Jing Yang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qiang Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 200473, China
| | - Nuo Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuan-Bin Shi
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yang Bai
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dong-Sheng Yu
- Division of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 200473, China.
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
Worku MG. Pluripotent and Multipotent Stem Cells and Current Therapeutic Applications: Review. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2021; 14:3-7. [PMID: 33880040 PMCID: PMC8052119 DOI: 10.2147/sccaa.s304887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
There is numerous evidence for the presence of stem cells, which is important for the treatment of a wide variety of disease conditions. Stem cells have a great therapeutic effect on different degenerative diseases through the development of specialized cells. Embryonic stem (ES) cells are derived from preimplantation embryos, which have a natural karyotype. This cell has the capacity of proliferation indefinitely and undifferentiated. Stem cells are very crucial for the treatment of different chronic and degenerative diseases. For instance, stem cell clinical trials have been done for ischemic heart disease. Also, the olfactory cells for spinal cord lesions and human fetal pancreatic cells for diabetes mellitus are the other clinical importance of stem cell therapy. Extracellular matrix (ECM) and other environmental factors influence the fate and activity of stem cells.
Collapse
Affiliation(s)
- Misganaw Gebrie Worku
- Department of Human Anatomy, University of Gondar, College of Medicine and Health Science, School of Medicine, Gondar, Ethiopia
| |
Collapse
|
9
|
Chai X, Guo J, Dong R, Yang X, Deng C, Wei C, Xu J, Han W, Lu J, Gao C, Gao D, Huang C, Ke A, Li S, Li H, Tian Y, Gu Z, Liu S, Liu H, Chen Q, Liu F, Zhou J, Fan J, Shi G, Wu F, Cai J. Quantitative acetylome analysis reveals histone modifications that may predict prognosis in hepatitis B-related hepatocellular carcinoma. Clin Transl Med 2021; 11:e313. [PMID: 33783990 PMCID: PMC7939233 DOI: 10.1002/ctm2.313] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Lysine acetylation (Kac) as an important posttranslational modification of histones is essential for the regulation of gene expression in hepatocellular carcinoma (HCC). However, the atlas of whole acetylated proteins in HCC tissues and the difference in protein acetylation between normal human tissues and HCC tissues are unknown. In this report, we characterized the proteome and acetyl proteome (acetylome) profile of normal, paracancerous, and HCC liver tissues in human clinical samples by quantitative proteomics techniques. We identified 6781 acetylation sites of 2582 proteins and quantified 2492 acetylation sites of 1190 proteins in normal, paracancerous, and HCC liver tissues. Among them, 15 proteins were multiacetylated with more than 10 lysine residues. The histone acetyltransferases p300 and CBP were found to be hyperacetylated in hepatitis B virus pathway. Moreover, we found that 250 Kac sites of 214 proteins were upregulated and 662 Kac sites of 451 proteins were downregulated in HCC compared with normal liver tissues. Additionally, the acetylation levels of lysine 120 in histone H2B (H2BK120ac), lysine 18 in histone H3.3 (H3.3K18ac), and lysine 77 in histone H4 (H4K77ac) were increased in HCC. Interestingly, the higher levels of H2BK120ac, H3.3K18ac, and H4K77ac were significantly associated with worse prognosis, such as poorer survival and higher recurrence in an independent clinical cohort of HCC patients. Overall, this study lays a foundation for understanding the functions of acetylation in HCC and provides potential prognostic factors for the diagnosis and therapy of HCC.
Collapse
Affiliation(s)
- Xiaoqiang Chai
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Jianfei Guo
- Shanghai Center for Plant Stress BiologyCenter for Excellence in Plant Molecular SciencesChinese Academy of SciencesShanghaiChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Ruizhao Dong
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Xuan Yang
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Chao Deng
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
- School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Chuanyuan Wei
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - JiaJie Xu
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
- School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Weiyu Han
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Jiacheng Lu
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Chao Gao
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Dongmei Gao
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Cheng Huang
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Aiwu Ke
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Shuangqi Li
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Huanping Li
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Yingming Tian
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Zhongkai Gu
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Shuxian Liu
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Hang Liu
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Qilong Chen
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Feng Liu
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Jian Zhou
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Jia Fan
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Guoming Shi
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Feizhen Wu
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Jiabin Cai
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| |
Collapse
|
10
|
Hashimoto Y, Greco TM, Cristea IM. Contribution of Mass Spectrometry-Based Proteomics to Discoveries in Developmental Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:143-154. [PMID: 31347046 DOI: 10.1007/978-3-030-15950-4_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Understanding multicellular organism development from a molecular perspective is no small feat, yet this level of comprehension affords clinician-scientists the ability to identify root causes and mechanisms of congenital diseases. Inarguably, the maturation of molecular biology tools has significantly contributed to the identification of genetic loci that underlie normal and aberrant developmental programs. In combination with cell biology approaches, these tools have begun to elucidate the spatiotemporal expression and function of developmentally-regulated proteins. The emergence of quantitative mass spectrometry (MS) for biological applications has accelerated the pace at which these proteins can be functionally characterized, driving the construction of an increasingly detailed systems biology picture of developmental processes. Here, we review the quantitative MS-based proteomic technologies that have contributed significantly to understanding the role of proteome regulation in developmental processes. We provide a brief overview of these methodologies, focusing on their ability to provide precise and accurate proteome measurements. We then highlight the use of discovery-based and targeted mass spectrometry approaches in model systems to study cellular differentiation states, tissue phenotypes, and spatiotemporal subcellular organization. We also discuss the current application and future perspectives of MS proteomics to study PTM coordination and the role of protein complexes during development.
Collapse
Affiliation(s)
- Yutaka Hashimoto
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Todd M Greco
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA.
| |
Collapse
|