1
|
Zhang Y, Yang Y, Li K, Chen L, Yang Y, Yang C, Xie Z, Wang H, Zhao Q. Enhanced Discovery of Alternative Proteins (AltProts) in Mouse Cardiac Development Using Data-Independent Acquisition (DIA) Proteomics. Anal Chem 2025; 97:1517-1527. [PMID: 39813267 PMCID: PMC11781309 DOI: 10.1021/acs.analchem.4c02924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 01/18/2025]
Abstract
Alternative proteins (AltProts) are a class of proteins encoded by DNA sequences previously classified as noncoding. Despite their historically being overlooked, recent studies have highlighted their widespread presence and distinctive biological roles. So far, direct detection of AltProt has been relying on data-dependent acquisition (DDA) mass spectrometry (MS). However, data-independent acquisition (DIA) MS, a method that is rapidly gaining popularity for the analysis of canonical proteins, has seen limited application in AltProt research, largely due to the complexities involved in constructing DIA libraries. In this study, we present a novel DIA workflow that leverages a fragmentation spectra predictor for the efficient construction of DIA libraries, significantly enhancing the detection of AltProts. Our method achieved a 2-fold increase in the identification of AltProts and a 50% reduction in missing values compared to DDA. We conducted a comprehensive comparison of four AltProt databases, four DIA-library construction strategies, and three analytical software tools to establish an optimal workflow for AltProt analysis. Utilizing this workflow, we investigated the mouse heart development process and identified over 50 AltProts with differential expression between embryonic and adult heart tissues. Over 30 unannotated mouse AltProts were validated, including ASDURF, which played a crucial role in cardiac development. Our findings not only provide a practical workflow for MS-based AltProt analysis but also reveal novel AltProts with potential significance in biological functions.
Collapse
Affiliation(s)
- Yuanliang Zhang
- Department
of Applied Biology and Chemical Technology, State Key Laboratory of
Chemical Biology and Drug Discovery, Hong
Kong Polytechnic University, Hong Kong 999077, China
| | - Ying Yang
- Department
of Applied Biology and Chemical Technology, State Key Laboratory of
Chemical Biology and Drug Discovery, Hong
Kong Polytechnic University, Hong Kong 999077, China
| | - Kecheng Li
- Department
of Applied Biology and Chemical Technology, State Key Laboratory of
Chemical Biology and Drug Discovery, Hong
Kong Polytechnic University, Hong Kong 999077, China
| | - Lei Chen
- Department
of Applied Biology and Chemical Technology, State Key Laboratory of
Chemical Biology and Drug Discovery, Hong
Kong Polytechnic University, Hong Kong 999077, China
| | - Yang Yang
- Department
of Applied Biology and Chemical Technology, State Key Laboratory of
Chemical Biology and Drug Discovery, Hong
Kong Polytechnic University, Hong Kong 999077, China
| | - Chenxi Yang
- Department
of Applied Biology and Chemical Technology, State Key Laboratory of
Chemical Biology and Drug Discovery, Hong
Kong Polytechnic University, Hong Kong 999077, China
| | - Zhi Xie
- State
Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hongwei Wang
- State
Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qian Zhao
- Department
of Applied Biology and Chemical Technology, State Key Laboratory of
Chemical Biology and Drug Discovery, Hong
Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
2
|
Chen Q, Zhang Y, Zhang K, Liu J, Pan H, Wang X, Li S, Hu D, Lin Z, Zhao Y, Hou G, Guan F, Li H, Liu S, Ren Y. Profiling the Bisecting N-acetylglucosamine Modification in Amniotic Membrane via Mass Spectrometry. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:648-656. [PMID: 35123071 PMCID: PMC9880894 DOI: 10.1016/j.gpb.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 01/31/2023]
Abstract
Bisecting N-acetylglucosamine (GlcNAc), a GlcNAc linked to the core β-mannose residue via a β1,4 linkage, is a special type of N-glycosylation that has been reported to be involved in various biological processes, such as cell adhesion and fetal development. This N-glycan structure is abundant in human trophoblasts, which is postulated to be resistant to natural killer cell-mediated cytotoxicity, enabling a mother to nourish a fetus without rejection. In this study, we hypothesized that the human amniotic membrane, which serves as the last barrier for the fetus, may also express bisected-type glycans. To test this hypothesis, glycomic analysis of the human amniotic membrane was performed, and bisected N-glycans were detected. Furthermore, our proteomic data, which have been previously employed to explore human missing proteins, were analyzed and the presence of bisecting GlcNAc-modified peptides was confirmed. A total of 41 glycoproteins with 43 glycopeptides were found to possess a bisecting GlcNAc, and 25 of these glycoproteins were reported to exhibit this type of modification for the first time. These results provide insights into the potential roles of bisecting GlcNAc modification in the human amniotic membrane, and can be beneficial to functional studies on glycoproteins with bisecting GlcNAc modifications and functional studies on immune suppression in human placenta.
Collapse
Affiliation(s)
| | | | | | - Jie Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Siqi Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Dandan Hu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Yun Zhao
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Feng Guan
- Joint International Research Laboratory of Glycobiology and Medical Chemistry, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Hong Li
- Shenzhen Seventh People's Hospital, Shenzhen 518081, China
| | - Siqi Liu
- BGI-Shenzhen, Shenzhen 518083, China,Corresponding authors.
| | - Yan Ren
- BGI-Shenzhen, Shenzhen 518083, China,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,Corresponding authors.
| |
Collapse
|
3
|
Bu F, Cheng Q, Zhang Y, Zhang X, Yan K, Liu F, Li Z, Lu X, Ren Y, Liu S. Discovery of Missing Proteins from an Aneuploidy Cell Line Using a Proteogenomic Approach. J Proteome Res 2021; 20:5329-5339. [PMID: 34748338 DOI: 10.1021/acs.jproteome.1c00772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the steadfast development of proteomic technology, the number of missing proteins (MPs) has been continuously shrinking, with approximately 1470 MPs that have not been explored yet. Due to this phenomenon, the discovery of MPs has been increasingly more difficult and elusive. In order to face this challenge, we have hypothesized that a stable aneuploid cell line with increased chromosomes serves as a useful material for assisting MP exploration. Ker-CT cell line with trisomy at chromosome 5 and 20 was selected for this purpose. With a combination strategy of RNA-Seq and LC-MS/MS, a total of 22 178 transcripts and 8846 proteins were identified in Ker-CT. Although the transcripts corresponding to 15 and 15 MP genes located at chromosome 5 and 20 were detected, none of the MPs were found in Ker-CT. Surprisingly, 3 MPs containing at least two unique non-nest peptides of length ≥9 amino acids were identified in Ker-CT, whose genes are located on chromosome 3 and 10, respectively. Furthermore, the 3 MPs were verified using the method of parallel reaction monitoring (PRM). These results suggest that the abnormal status of chromosomes may not only impact the expression of the corresponding genes in trisomy chromosomes, but also influence that of other chromosomes, which benefits MP discovery. The data obtained in this study are available via ProteomeXchange (PXD028647) and PeptideAtlas (PASS01700), respectively.
Collapse
Affiliation(s)
- Fanyu Bu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Qingqiu Cheng
- Clinical Laboratory Center of Dongguan Eighth People's Hospital, Dongguan 523325, China
| | - Yuxing Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Xia Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Keqiang Yan
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Frank Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Zelong Li
- Biological Resource Center of Plants, Animals and Microorganisms, China National Gene Bank, BGI-Shenzhen, Guangdong 518120, China
| | - Xiaomei Lu
- Clinical Laboratory Center of Dongguan Eighth People's Hospital, Dongguan 523325, China
| | - Yan Ren
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Siqi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| |
Collapse
|
4
|
Reales-Calderón JA, Sun Z, Mascaraque V, Pérez-Navarro E, Vialás V, Deutsch EW, Moritz RL, Gil C, Martínez JL, Molero G. A wide-ranging Pseudomonas aeruginosa PeptideAtlas build: A useful proteomic resource for a versatile pathogen. J Proteomics 2021; 239:104192. [PMID: 33757883 PMCID: PMC8668395 DOI: 10.1016/j.jprot.2021.104192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 01/05/2023]
Abstract
Pseudomonas aeruginosa is an important opportunistic human pathogen with high prevalence in nosocomial infections. This microorganism is a good model for understanding biological processes such as the quorum-sensing response, the metabolic integration of virulence, the mechanisms of global regulation of bacterial physiology, and the evolution of antibiotic resistance. Till now, P. aeruginosa proteomic data, although available in several on-line repositories, were dispersed and difficult to access. In the present work, proteomes of the PAO1 strain grown under different conditions and from diverse cellular compartments have been joined to build the Pseudomonas PeptideAtlas. This resource is a comprehensive mass spectrometry-derived peptide and inferred protein database with 71.3% coverage of the total predicted proteome of P. aeruginosa PAO1, the highest coverage among bacterial PeptideAtlas datasets. The proteins included cover 89% of metabolic proteins, 72% of proteins involved in genetic information processing, 83% of proteins responsible for environmental information processing, more than 88% of the ones related to quorum sensing and biofilm formation, and 89% of proteins responsible for antimicrobial resistance. It exemplifies a necessary tool for targeted proteomics studies, system-wide observations, and cross-species observational studies. The manuscript describes the building of the PeptideAtlas and the contribution of the different proteomic data used. SIGNIFICANCE: Pseudomonas aeruginosa is among the most versatile human bacterial pathogens. Studies of its proteome are very important as they can reveal virulence factors and mechanisms of antibiotic resistance. The construction of a proteomic resource such as the PeptideAtlas enables targeted proteomics studies, system-wide observations, and cross-species observational studies.
Collapse
Affiliation(s)
- J A Reales-Calderón
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Z Sun
- Institute for Systems Biology, Seattle, WA, USA
| | - V Mascaraque
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - E Pérez-Navarro
- Unidad de Proteómica de la Universidad Complutense de Madrid, Spain
| | - V Vialás
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - E W Deutsch
- Institute for Systems Biology, Seattle, WA, USA
| | - R L Moritz
- Institute for Systems Biology, Seattle, WA, USA
| | - C Gil
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain; Unidad de Proteómica de la Universidad Complutense de Madrid, Spain
| | - J L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - G Molero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain.
| |
Collapse
|
5
|
Zhang Y, Zhang K, Bu F, Hao P, Yang H, Liu S, Ren Y. D283 Med, a Cell Line Derived from Peritoneal Metastatic Medulloblastoma: A Good Choice for Missing Protein Discovery. J Proteome Res 2020; 19:4857-4866. [DOI: 10.1021/acs.jproteome.0c00743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yuanliang Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
- BGI-Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Keren Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
- BGI-Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Fanyu Bu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Huanming Yang
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Siqi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
- BGI-Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yan Ren
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
- BGI-Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| |
Collapse
|
6
|
Omenn GS, Lane L, Overall CM, Corrales FJ, Schwenk JM, Paik YK, Van Eyk JE, Liu S, Pennington S, Snyder MP, Baker MS, Deutsch EW. Progress on Identifying and Characterizing the Human Proteome: 2019 Metrics from the HUPO Human Proteome Project. J Proteome Res 2019; 18:4098-4107. [PMID: 31430157 PMCID: PMC6898754 DOI: 10.1021/acs.jproteome.9b00434] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Human Proteome Project (HPP) annually reports on progress made throughout the field in credibly identifying and characterizing the complete human protein parts list and making proteomics an integral part of multiomics studies in medicine and the life sciences. NeXtProt release 2019-01-11 contains 17 694 proteins with strong protein-level evidence (PE1), compliant with HPP Guidelines for Interpretation of MS Data v2.1; these represent 89% of all 19 823 neXtProt predicted coding genes (all PE1,2,3,4 proteins), up from 17 470 one year earlier. Conversely, the number of neXtProt PE2,3,4 proteins, termed the "missing proteins" (MPs), has been reduced from 2949 to 2129 since 2016 through efforts throughout the community, including the chromosome-centric HPP. PeptideAtlas is the source of uniformly reanalyzed raw mass spectrometry data for neXtProt; PeptideAtlas added 495 canonical proteins between 2018 and 2019, especially from studies designed to detect hard-to-identify proteins. Meanwhile, the Human Protein Atlas has released version 18.1 with immunohistochemical evidence of expression of 17 000 proteins and survival plots as part of the Pathology Atlas. Many investigators apply multiplexed SRM-targeted proteomics for quantitation of organ-specific popular proteins in studies of various human diseases. The 19 teams of the Biology and Disease-driven B/D-HPP published a total of 160 publications in 2018, bringing proteomics to a broad array of biomedical research.
Collapse
Affiliation(s)
- Gilbert S. Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, Michigan 48109-2218, United States
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5263, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU, Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Christopher M. Overall
- Life Sciences Institute, Faculty of Dentistry, University of British Columbia, 2350 Health Sciences Mall, Room 4.401, Vancouver, British Columbia V6T 1Z3, Canada
| | | | - Jochen M. Schwenk
- Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23A, 17165 Solna, Sweden
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University, Room 425, Building #114, 50 Yonsei-ro, Seodaemoon-ku, Seoul 120-749, South Korea
| | - Jennifer E. Van Eyk
- Advanced Clinical BioSystems Research Institute, Cedars Sinai Precision Biomarker Laboratories, Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Siqi Liu
- BGI Group-Shenzhen, Yantian District, Shenzhen 518083, China
| | - Stephen Pennington
- School of Medicine, University College Dublin, Conway Institute Belfield, Dublin 4, Ireland
| | - Michael P. Snyder
- Department of Genetics, Stanford University, Alway Building, 300 Pasteur Drive and 3165 Porter Drive, Palo Alto, California 94304, United States
| | - Mark S. Baker
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road, North Ryde, NSW 2109, Australia
| | - Eric W. Deutsch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5263, United States
| |
Collapse
|
7
|
Zhang Y, Lin Z, Tan Y, Bu F, Hao P, Zhang K, Yang H, Liu S, Ren Y. Exploration of Missing Proteins by a Combination Approach to Enrich the Low-Abundance Hydrophobic Proteins from Four Cancer Cell Lines. J Proteome Res 2019; 19:401-408. [DOI: 10.1021/acs.jproteome.9b00590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yuanliang Zhang
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhilong Lin
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Yifan Tan
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Fanyu Bu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, Guangdong, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Keren Zhang
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Siqi Liu
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Yan Ren
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
8
|
Lin Z, Zhang Y, Pan H, Hao P, Li S, He Y, Yang H, Liu S, Ren Y. Alternative Strategy To Explore Missing Proteins with Low Molecular Weight. J Proteome Res 2019; 18:4180-4188. [PMID: 31592669 DOI: 10.1021/acs.jproteome.9b00353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Identifying more missing proteins (MPs) is an important mission of C-HPP. With the number of identified MPs being attenuated year by year (2,949 to 2,129 MPs from 2016 to 2019), we have realized that the difficulty of exploring the remaining MPs is a challenge in technique. Herein, we propose a comprehensive strategy to effectively enrich, separate, and identify proteins with low molecular weights, aiming at the discovery of MPs. Basically, a protein extract from human placenta was passed through a C18 SPE column, and the bound proteins that were eluted were further separated with an SDS-PAGE gel or a 50 kDa cutoff filter. The separated proteins were subjected to trypsin digestion, and the MS/MS signals were searched against data sets with two different digestion modes (full-trypsin and semitrypsin). The strategy was adopted, resulting in the identification of 4 MPs with 8 unique peptides (≥2 non-nested unique peptides with ≥9 amino acids). Importantly, the identification of 6 out of 8 of the unique peptides derived from the MPs was further supported by parallel reaction monitoring, which confirmed the identification of 3 MPs from human placenta tissues (Q6NT89: TMF-regulated nuclear protein 1; A0A183: late cornified envelope protein 6A; and Q6UWQ7: insulin growth factor-like family member 2, mapped to chromosomes 1, 1, and 19, respectively). The three proteins ranged in length from 80 aa to 227 aa. The study not only establishes a feasible strategy for analyzing proteins with low molecular weights but also fills a small part of a large gap in the list of MPs. The data obtained in this study are available via ProteomeXchange (PXD014083) and PeptideAtlas (PASS01389).
Collapse
Affiliation(s)
- Zhilong Lin
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Yuanliang Zhang
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Huozhen Pan
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Piliang Hao
- School of Life Science and Technology , ShanghaiTech University , 393 Middle Huaxia Road , Shanghai 201210 , China
| | - Siqi Li
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Yanbin He
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Huanming Yang
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,James D. Watson Institute of Genome Sciences , Hangzhou 310058 , China
| | - Siqi Liu
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Yan Ren
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| |
Collapse
|
9
|
Elguoshy A, Hirao Y, Yamamoto K, Xu B, Kinoshita N, Mitsui T, Yamamoto T. Utilization of the Proteome Data Deposited in SRMAtlas for Validating the Existence of the Human Missing Proteins in GPM. J Proteome Res 2019; 18:4197-4205. [PMID: 31646870 DOI: 10.1021/acs.jproteome.9b00355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Human Proteome Project (HPP) has made great efforts to clarify the existing evidence of human proteins since 2012. However, according to the recent release of neXtProt (2019-1), approximately 10% of all human genes still have inadequate or no experimental evidence of their translation at the protein level. They were categorized as missing proteins (PE2-PE4). To further the goal of HPP, we developed a two-step bioinformatic strategy addressing the utilization of the SRMAtlas synthetic peptides corresponding to the missing proteins as an exclusive reference in order to explore their natural counterparts within GPM. In the first step, we searched the GPM for the non-nested SRMAtlas peptides corresponding to the missing proteins, taking under consideration only those detected via ≥2 non-nested unitypic/proteotypic peptides "Stranded peptides" with length ≥9 amino acids in the same proteomic study. As a result, 51 missing proteins were newly detected in 35 different proteomic studies. In the second step, we validated these newly detected missing proteins based on matching the spectra of their synthetic and natural peptides in SRMAtlas and GPM, respectively. The results showed that 23 of the missing proteins with ≥2 non-nested peptides were validated by careful spectral matching.
Collapse
Affiliation(s)
- Amr Elguoshy
- Biofluid and Biomarker Center, Graduate School of Medical and Dental Sciences , Niigata University , Niigata 950-2181 , Japan.,Graduate School of Science and Technology , Niigata University , Niigata 950-2181 , Japan.,Biotechnology Department, Faculty of Agriculture , Al-Azhar University , Cairo 11651 , Egypt
| | - Yoshitoshi Hirao
- Biofluid and Biomarker Center, Graduate School of Medical and Dental Sciences , Niigata University , Niigata 950-2181 , Japan
| | - Keiko Yamamoto
- Biofluid and Biomarker Center, Graduate School of Medical and Dental Sciences , Niigata University , Niigata 950-2181 , Japan
| | - Bo Xu
- Biofluid and Biomarker Center, Graduate School of Medical and Dental Sciences , Niigata University , Niigata 950-2181 , Japan
| | - Naohiko Kinoshita
- Biofluid and Biomarker Center, Graduate School of Medical and Dental Sciences , Niigata University , Niigata 950-2181 , Japan.,Department of Health Informatics , Niigata University of Health and Welfare , Niigata 950-3102 , Japan
| | - Toshiaki Mitsui
- Graduate School of Science and Technology , Niigata University , Niigata 950-2181 , Japan
| | - Tadashi Yamamoto
- Biofluid and Biomarker Center, Graduate School of Medical and Dental Sciences , Niigata University , Niigata 950-2181 , Japan.,Department of Clinical Laboratory , Shinrakuen Hospital , Niigata 950-2087 , Japan
| |
Collapse
|
10
|
Omenn GS, Lane L, Overall CM, Corrales FJ, Schwenk JM, Paik YK, Van Eyk JE, Liu S, Snyder M, Baker MS, Deutsch EW. Progress on Identifying and Characterizing the Human Proteome: 2018 Metrics from the HUPO Human Proteome Project. J Proteome Res 2018; 17:4031-4041. [PMID: 30099871 PMCID: PMC6387656 DOI: 10.1021/acs.jproteome.8b00441] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Human Proteome Project (HPP) annually reports on progress throughout the field in credibly identifying and characterizing the human protein parts list and making proteomics an integral part of multiomics studies in medicine and the life sciences. NeXtProt release 2018-01-17, the baseline for this sixth annual HPP special issue of the Journal of Proteome Research, contains 17 470 PE1 proteins, 89% of all neXtProt predicted PE1-4 proteins, up from 17 008 in release 2017-01-23 and 13 975 in release 2012-02-24. Conversely, the number of neXtProt PE2,3,4 missing proteins has been reduced from 2949 to 2579 to 2186 over the past two years. Of the PE1 proteins, 16 092 are based on mass spectrometry results, and 1378 on other kinds of protein studies, notably protein-protein interaction findings. PeptideAtlas has 15 798 canonical proteins, up 625 over the past year, including 269 from SUMOylation studies. The largest reason for missing proteins is low abundance. Meanwhile, the Human Protein Atlas has released its Cell Atlas, Pathology Atlas, and updated Tissue Atlas, and is applying recommendations from the International Working Group on Antibody Validation. Finally, there is progress using the quantitative multiplex organ-specific popular proteins targeted proteomics approach in various disease categories.
Collapse
Affiliation(s)
- Gilbert S. Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, Michigan 48109-2218, United States
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5263, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU, Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Christopher M. Overall
- Life Sciences Institute, Faculty of Dentistry, University of British Columbia, 2350 Health Sciences Mall, Room 4.401, Vancouver, BC Canada V6T 1Z3
| | | | - Jochen M. Schwenk
- Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23A, 17165 Solna, Sweden
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Room 425, Building #114, Yonsei University,50 Yonsei-ro, Seodaemoon-ku, Seoul 120-749, Korea
| | - Jennifer E. Van Eyk
- Advanced Clinical BioSystems Research Institute, Cedars Sinai Precision Biomarker Laboratories, Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Siqi Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, United States
| | - Michael Snyder
- Department of Genetics, Stanford University, Alway Building, 300 Pasteur Drive, 3165 Porter Drive, Palo Alto, 94304, United States
| | - Mark S. Baker
- Department of Biomedical Sciences, Macquarie University, NSW 2109, Australia
| | - Eric W. Deutsch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5263, United States
| |
Collapse
|
11
|
Paik YK. Toward Completion of the Human Proteome Parts List: Progress Uncovering Proteins That Are Missing or Have Unknown Function and Developing Analytical Methods. J Proteome Res 2018; 17:4023-4030. [PMID: 30985145 PMCID: PMC6288998 DOI: 10.1021/acs.jproteome.8b00885] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Young-Ki Paik
- Yonsei
Proteome Research Center, College of Life Science and
Technology, Yonsei University
| |
Collapse
|