1
|
D'Mello R, Hüttmann N, Minic Z, V Berezovski M. Untargeted metabolomic profiling of small extracellular vesicles reveals potential new biomarkers for triple negative breast cancer. Metabolomics 2024; 20:123. [PMID: 39487276 DOI: 10.1007/s11306-024-02191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
INTRODUCTION Breast Cancer (BC) is one of the most diagnosed malignancies among women and the second leading cause of cancer related death in North America. Triple Negative BC (TNBC), one of the most severe subtypes of BC, is extremely aggressive and has a higher chance of occurrence in women under 50 years of age. Due to a lack of regular mammographic testing in women under 50, many individuals with TNBC are diagnosed late which can decrease their survival rate. Currently, liquid biopsy is being investigated as a potentially less-invasive alternative to traditional breast tissue biopsy, but this approach is not completely reliable. Blood contains extracellular vesicles (EVs), which carry biomolecular cargo and play a role in BC progression and metastasis. Examination of small EVs could potentially yield metabolite biomarkers for early BC diagnosis. OBJECTIVE We aim to study metabolites in small EVs to find biomarkers for BC diagnosis. METHODS In this work, an untargeted nano-LC MS/MS metabolomics approach was used to analyze metabolites from small EVs derived from metastatic MDA-MB-231 and compare it with a non-cancerous MCF10A cell line. RESULTS Two metabolites, LysoPC 22:6/0:0 and N-acetyl-L-Phenylalanine, unique to sEVs of MDA-MB-231, were identified, validated, and proposed as potential BC biomarkers. CONCLUSION Metabolites from sEVs may be used for BC diagnosis.
Collapse
Affiliation(s)
- Rochelle D'Mello
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Nico Hüttmann
- John L. Holmes Biological Mass Spectrometry Facility, University of Ottawa, Ottawa, Canada
| | - Zoran Minic
- John L. Holmes Biological Mass Spectrometry Facility, University of Ottawa, Ottawa, Canada.
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada.
- John L. Holmes Biological Mass Spectrometry Facility, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
2
|
López-López Á, López-Gonzálvez Á, Barbas C. Metabolomics for searching validated biomarkers in cancer studies: a decade in review. Expert Rev Mol Diagn 2024; 24:601-626. [PMID: 38904089 DOI: 10.1080/14737159.2024.2368603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION In the dynamic landscape of modern healthcare, the ability to anticipate and diagnose diseases, particularly in cases where early treatment significantly impacts outcomes, is paramount. Cancer, a complex and heterogeneous disease, underscores the critical importance of early diagnosis for patient survival. The integration of metabolomics information has emerged as a crucial tool, complementing the genotype-phenotype landscape and providing insights into active metabolic mechanisms and disease-induced dysregulated pathways. AREAS COVERED This review explores a decade of developments in the search for biomarkers validated within the realm of cancer studies. By critically assessing a diverse array of research articles, clinical trials, and studies, this review aims to present an overview of the methodologies employed and the progress achieved in identifying and validating biomarkers in metabolomics results for various cancer types. EXPERT OPINION Through an exploration of more than 800 studies, this review has allowed to establish a general idea about state-of-art in the search of biomarkers in metabolomics studies involving cancer which include certain level of results validation. The potential for metabolites as diagnostic markers to reach the clinic and make a real difference in patient health is substantial, but challenges remain to be explored.
Collapse
Affiliation(s)
- Ángeles López-López
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Ángeles López-Gonzálvez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
3
|
Rivera-Alcántara JA, Esparza-Hurtado N, Galán-Ramírez GA, Cruz-Bautista I, Mehta R, Aguilar-Salinas CA, Martagon AJ. A systematic review of biobanks in Latin America: Strengths and limitations for biomedical research. Int J Biol Markers 2024; 39:91-106. [PMID: 38613331 DOI: 10.1177/03936155241239672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Biobanks are valuable tools for developing and applying scientific research and international cooperation through the collection of biological materials and their associated data. Systematic research following the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines was conducted in late 2022 in PubMed and Scopus, and generated 17 articles to be reviewed in depth and critically assessed using the Critical Appraisal Skills Programme Checklist due to the limited available data; 12 relevant health organizations and government websites outside of peer-reviewed journals were also included. Our research identified 44 biobanks in Latin America. In general, there is a lack of regulation and legislation guaranteeing the stored materials' quality and institutional collaboration. We believe a consensus needs to be reached regarding the terminology and definitions used for biobanks. The design for informed consent should also be agreed upon to ensure the privacy of the data shared among institutions. In conclusion, in Latin America, there is a clear need for government support in creating specific procedures for biobanks and providing further support for existing biobanks.
Collapse
Affiliation(s)
| | | | - Gabriela A Galán-Ramírez
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Mexico City, Mexico
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ivette Cruz-Bautista
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Roopa Mehta
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Carlos A Aguilar-Salinas
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Mexico City, Mexico
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alexandro J Martagon
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Mexico City, Mexico
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| |
Collapse
|
4
|
Huang Z, Feng Y, Zeng J, Zhao M. Six categories of amino acid derivatives with potential taste contributions: a review of studies on soy sauce. Crit Rev Food Sci Nutr 2023; 64:7981-7992. [PMID: 37009850 DOI: 10.1080/10408398.2023.2194422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
During the fermentation of soy sauce, the metabolism of microorganisms and the Maillard reaction produce a wide variety of metabolites that contribute to the unique and rich flavor characteristics of soy sauce, such as amino acids, organic acids and peptides. Amino acid derivatives, a relatively new taste compounds, formed by the reaction of enzymes or non-enzymes from sugars, amino acids, and organic acids released through metabolism by microorganisms during soy sauce fermentation, have begun to gain more and more attention in recent years. This review focused on our existing knowledge of the sources, taste characteristics and synthesis methods of the 6 categories of amino acid derivatives, including Amadori compounds, γ-glutamyl peptides, pyroglutamyl amino acids, N-lactoyl amino acids, N-acetyl amino acids and N-succinyl amino acids. Sixty-four amino acid derivatives were detected in soy sauce, of which 47 were confirmed to have potential contribution to the taste of soy sauce, especially umami and kokumi, and some of them also have the effect of reducing bitterness. Furthermore, some amino acid derivatives, like γ-glutamyl peptides and N-lactoyl amino acids, were found to be synthesized enzymatically in vitro, which laid the foundation for further study on their formation pathways in the future.
Collapse
Affiliation(s)
- Zikun Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Jing Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| |
Collapse
|
5
|
Feng J, Gong Z, Sun Z, Li J, Xu N, Thorne RF, Zhang XD, Liu X, Liu G. Microbiome and metabolic features of tissues and feces reveal diagnostic biomarkers for colorectal cancer. Front Microbiol 2023; 14:1034325. [PMID: 36712187 PMCID: PMC9880203 DOI: 10.3389/fmicb.2023.1034325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Microbiome and their metabolites are increasingly being recognized for their role in colorectal cancer (CRC) carcinogenesis. Towards revealing new CRC biomarkers, we compared 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) metabolite analyses in 10 CRC (TCRC) and normal paired tissues (THC) along with 10 matched fecal samples (FCRC) and 10 healthy controls (FHC). The highest microbial phyla abundance from THC and TCRC were Firmicutes, while the dominant phyla from FHC and FCRC were Bacteroidetes, with 72 different microbial genera identified among four groups. No changes in Chao1 indices were detected between tissues or between fecal samples whereas non-metric multidimensional scaling (NMDS) analysis showed distinctive clusters among fecal samples but not tissues. LEfSe analyses indicated Caulobacterales and Brevundimonas were higher in THC than in TCRC, while Burkholderialese, Sutterellaceaed, Tannerellaceaea, and Bacteroidaceae were higher in FHC than in FCRC. Microbial association networks indicated some genera had substantially different correlations. Tissue and fecal analyses indicated lipids and lipid-like molecules were the most abundant metabolites detected in fecal samples. Moreover, partial least squares discriminant analysis (PLS-DA) based on metabolic profiles showed distinct clusters for CRC and normal samples with a total of 102 differential metabolites between THC and TCRC groups and 700 metabolites different between FHC and FCRC groups. However, only Myristic acid was detected amongst all four groups. Highly significant positive correlations were recorded between genus-level microbiome and metabolomics data in tissue and feces. And several metabolites were associated with paired microbes, suggesting a strong microbiota-metabolome coupling, indicating also that part of the CRC metabolomic signature was attributable to microbes. Suggesting utility as potential biomarkers, most such microbiome and metabolites showed directionally consistent changes in CRC patients. Nevertheless, further studies are needed to increase sample sizes towards verifying these findings.
Collapse
Affiliation(s)
- Jiahui Feng
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Zhizhong Gong
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Zhangran Sun
- School of Life Sciences, Anhui Medical University, Hefei, China
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Juan Li
- Department of Oncology, BinHu Hospital of Hefei, Hefei, China
| | - Na Xu
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Rick F. Thorne
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Xu Dong Zhang
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei, China
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gang Liu
- School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Manzi M, Zabalegui N, Monge ME. Postoperative Metabolic Phenoreversion in Clear Cell Renal Cell Carcinoma. J Proteome Res 2023; 22:1-15. [PMID: 36484409 DOI: 10.1021/acs.jproteome.2c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ultimate goal of surgical treatment in cancer is to remove the tumor mass for restoring a healthy state. A 16-lipid panel that discriminated healthy controls from clear cell renal cell carcinoma (ccRCC) patients in a prior study was evaluated in the present work in paired-serum samples collected from patients (n = 41) before and after nephrectomy. Changes in the lipid and metabolite fingerprints from ccRCC patients were investigated and compared with fingerprints from healthy individuals obtained by means of ultra-performance liquid chromatography-high-resolution mass spectrometry. The lipid panel differentiated phenotypes associated with metabolic restoration after surgery, representing a serum signature of phenoreversion to a healthy metabolic state. In particular, PC 16:0/0:0, PC 18:2/18:2, and linoleic acid allowed discriminating serum samples from ccRCC patients with poor prognosis from those with an improved outcome during the follow-up period. Ratios of PC 16:0/0:0 and PC 18:2/18:2 with linoleic acid levels may contribute as prognostic tools to support decision-making during the patient follow-up care. The preliminary character of these results should be validated with larger cohorts, including subjects with different ethnicities, life style, and diets. MetaboLights study references: MTBLS1839, MTBLS3838, and MTBLS4629.
Collapse
Affiliation(s)
- Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina.,Departamento de Fisiología, Biología molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
| | - Nicolás Zabalegui
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| |
Collapse
|
7
|
Exploring Metabolic Signatures of Ex Vivo Tumor Tissue Cultures for Prediction of Chemosensitivity in Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14184460. [PMID: 36139619 PMCID: PMC9496731 DOI: 10.3390/cancers14184460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Women diagnosed with ovarian cancer have 5-year survival rates below 45%. Prediction of patient’s outcome and the onset of drug resistance are still major challenges. The patient’s drug response is influenced by the environment that surrounds the tumor cells. We previously showed that patient-derived tumor tissue can be kept in the lab, alive and retaining aspects of that environment. In this study, we exposed tumor tissue derived from ovarian cancer patients to the chemotherapy patients receive and identified metabolites released by the tumor tissue after treatment (metabolic footprint). Using machine learning, we uncovered metabolic signatures that discriminate tumor tissues with higher vs. lower drug sensitivity. We propose potential biomarkers involved in the production of specific building blocks of cells and energy generation processes. Overall, we established a platform to explore metabolic features of the complex environment of each patient’s tumor that can underpin the discovery of biomarkers of drug response. Abstract Predicting patient response to treatment and the onset of chemoresistance are still major challenges in oncology. Chemoresistance is deeply influenced by the complex cellular interactions occurring within the tumor microenvironment (TME), including metabolic crosstalk. We have previously shown that ex vivo tumor tissue cultures derived from ovarian carcinoma (OvC) resections retain the TME components for at least four weeks of culture and implemented assays for assessment of drug response. Here, we explored ex vivo patient-derived tumor tissue cultures to uncover metabolic signatures of chemosensitivity and/or resistance. Tissue cultures derived from nine OvC cases were challenged with carboplatin and paclitaxel, the standard-of-care chemotherapeutics, and the metabolic footprints were characterized by LC-MS. Partial least-squares discriminant analysis (PLS-DA) revealed metabolic signatures that discriminated high-responder from low-responder tissue cultures to ex vivo drug exposure. As a proof-of-concept, a set of potential metabolic biomarkers of drug response was identified based on the receiver operating characteristics (ROC) curve, comprising amino acids, fatty acids, pyrimidine, glutathione, and TCA cycle pathways. Overall, this work establishes an analytical and computational platform to explore metabolic features of the TME associated with response to treatment, which can leverage the discovery of biomarkers of drug response and resistance in OvC.
Collapse
|
8
|
Brigante FI, Podio NS, Wunderlin DA, Baroni MV. Comparative metabolite fingerprinting of chia, flax and sesame seeds using LC-MS untargeted metabolomics. Food Chem 2022; 371:131355. [PMID: 34808769 DOI: 10.1016/j.foodchem.2021.131355] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Chia, flax, and sesame seeds are well known for their nutritional quality and are commonly included in bakery products. So far, the development of methods to verify their presence and authenticity in foods is a requisite and a raised need. In this work we applied untargeted metabolomics to propose authenticity markers. Seeds were analyzed by HPLC-MS/MS and 9938 features in negative mode and 9044 in positive mode were obtained by Mzmine. After isotopes grouping, alignment, gap-filling, filtering adducts, and normalization, PCA was applied to explore the dataset and recognize pre-existent classification patterns. OPLS-DA analysis and S-Plots were used as supervised methods. Twenty-five molecules (12 in negative mode and 13 in positive mode) were selected as discriminant for the three seeds, polyphenols and lignans were identified among them. To the best of our knowledge, this is the first approach using non-target HPLC-MS/MS for the authentication of chia, flax and sesame seeds.
Collapse
Affiliation(s)
- Federico I Brigante
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n; Cdad. Universitaria, 5000 Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica and ISIDSA-SECyT, Medina Allende esq. Haya de La Torre, Edif. Ciencias II, Cdad. Universitaria, 5000 Córdoba, Argentina
| | - Natalia S Podio
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n; Cdad. Universitaria, 5000 Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica and ISIDSA-SECyT, Medina Allende esq. Haya de La Torre, Edif. Ciencias II, Cdad. Universitaria, 5000 Córdoba, Argentina
| | - Daniel A Wunderlin
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n; Cdad. Universitaria, 5000 Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica and ISIDSA-SECyT, Medina Allende esq. Haya de La Torre, Edif. Ciencias II, Cdad. Universitaria, 5000 Córdoba, Argentina
| | - Maria V Baroni
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n; Cdad. Universitaria, 5000 Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica and ISIDSA-SECyT, Medina Allende esq. Haya de La Torre, Edif. Ciencias II, Cdad. Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
9
|
Umansky C, Morellato AE, Rieckher M, Scheidegger MA, Martinefski MR, Fernández GA, Pak O, Kolesnikova K, Reingruber H, Bollini M, Crossan GP, Sommer N, Monge ME, Schumacher B, Pontel LB. Endogenous formaldehyde scavenges cellular glutathione resulting in redox disruption and cytotoxicity. Nat Commun 2022; 13:745. [PMID: 35136057 PMCID: PMC8827065 DOI: 10.1038/s41467-022-28242-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
Formaldehyde (FA) is a ubiquitous endogenous and environmental metabolite that is thought to exert cytotoxicity through DNA and DNA-protein crosslinking, likely contributing to the onset of the human DNA repair condition Fanconi Anaemia. Mutations in the genes coding for FA detoxifying enzymes underlie a human inherited bone marrow failure syndrome (IBMFS), even in the presence of functional DNA repair, raising the question of whether FA causes relevant cellular damage beyond genotoxicity. Here, we report that FA triggers cellular redox imbalance in human cells and in Caenorhabditis elegans. Mechanistically, FA reacts with the redox-active thiol group of glutathione (GSH), altering the GSH:GSSG ratio and causing oxidative stress. FA cytotoxicity is prevented by the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR), which metabolizes FA-GSH products, lastly yielding reduced GSH. Furthermore, we show that GSH synthesis protects human cells from FA, indicating an active role of GSH in preventing FA toxicity. These findings might be relevant for patients carrying mutations in FA-detoxification systems and could suggest therapeutic benefits from thiol-rich antioxidants like N-acetyl-L-cysteine.
Collapse
Affiliation(s)
- Carla Umansky
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Agustín E Morellato
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Matthias Rieckher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany
| | - Marco A Scheidegger
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Manuela R Martinefski
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Buenos Aires, Argentina
| | - Gabriela A Fernández
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Buenos Aires, Argentina
| | - Oleg Pak
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ksenia Kolesnikova
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany
| | - Hernán Reingruber
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Mariela Bollini
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Buenos Aires, Argentina
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Natascha Sommer
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Buenos Aires, Argentina
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany
| | - Lucas B Pontel
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Pantalon Juraj N, Tandarić T, Tadić V, Perić B, Moreth D, Schatzschneider U, Brozovic A, Vianello R, Kirin SI. Tuning the coordination properties of chiral pseudopeptide bis(2-picolyl)amine and iminodiacetamide ligands in Zn( ii) and Cu( ii) complexes. Dalton Trans 2022; 51:17008-17021. [DOI: 10.1039/d2dt02895f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modifications of the chiral side chains of bpa and imda ligands lead to different metal ion coordination and hydrogen bonding ability.
Collapse
Affiliation(s)
| | | | | | | | - Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
11
|
Sriwi D, Alabdaljabar MS, Jacob M, Mujamammi AH, Gu X, Sabi EM, Li L, Hussein MH, Dasouki M, Abdel Rahman AM. Metabolomics Profiling of Cystic Renal Disease towards Biomarker Discovery. BIOLOGY 2021; 10:biology10080770. [PMID: 34440002 PMCID: PMC8389671 DOI: 10.3390/biology10080770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Cystic renal disease (CRD) is a group of diseases characterized by abnormal sacs, or cysts, in the kidneys. CRD can be detected using certain imaging modalities (i.e., ultrasound). Patients with CRD might be symptoms-free, while others can show symptoms long after cysts development. Although these cysts represent structural changes, we hypothesized that they have an underlying biochemical alteration. If so, this would open the floor for potential biomarker discovery, which would aid in CRD diagnosis and, possibly, treatment. On that basis, this study focuses on identifying biomarkers for CRD. To achieve that, we employed a metabolomics-based approach to identify intermediate molecules inside the cells that are byproducts of biochemical reactions. We used dry blood spots and serum samples of CRD patients and healthy controls to study the differences in their metabolomic profile. Our results suggest that certain metabolites, including uridine diphosphate, cystine-5-diphosphate, and morpholine, are potential biomarkers for CRD. The affected biochemical pathways in CRD include aminoacyl-tRNA biosynthesis, purine, pyrimidine, glutathione, TCA cycle, and some amino acid metabolism. These preliminary results could be the starting point for possible diagnostic and therapeutic approaches for CRD in the future. Abstract Cystic renal disease (CRD) comprises a heterogeneous group of genetic and acquired disorders. The cystic lesions are detected through imaging, either incidentally or after symptoms develop, due to an underlying disease process. In this study, we aim to study the metabolomic profiles of CRD patients for potential disease-specific biomarkers using unlabeled and labeled metabolomics using low and high-resolution mass spectrometry (MS), respectively. Dried-blood spot (DBS) and serum samples, collected from CRD patients and healthy controls, were analyzed using the unlabeled and labeled method. The metabolomics profiles for both sets of samples and groups were collected, and their data were processed using the lab’s standard protocol. The univariate analysis showed (FDR p < 0.05 and fold change 2) was significant to show a group of potential biomarkers for CRD discovery, including uridine diphosphate, cystine-5-diphosphate, and morpholine. Several pathways were involved in CRD patients based on the metabolic profile, including aminoacyl-tRNA biosynthesis, purine and pyrimidine, glutathione, TCA cycle, and some amino acid metabolism (alanine, aspartate and glutamate, arginine and tryptophan), which have the most impact. In conclusion, early CRD detection and treatment is possible using a metabolomics approach that targets alanine, aspartate, and glutamate pathway metabolites.
Collapse
Affiliation(s)
- Dalia Sriwi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (D.S.); (M.S.A.)
| | - Mohamad S. Alabdaljabar
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (D.S.); (M.S.A.)
| | - Minnie Jacob
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (M.J.); (M.D.)
| | - Ahmed H. Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.H.M.); (E.M.S.)
| | - Xinyun Gu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada; (X.G.); (L.L.)
| | - Essa M. Sabi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.H.M.); (E.M.S.)
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada; (X.G.); (L.L.)
| | - Maged H. Hussein
- Department of Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
| | - Majed Dasouki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (M.J.); (M.D.)
| | - Anas M. Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (D.S.); (M.S.A.)
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (M.J.); (M.D.)
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
- Correspondence: ; Tel.: +966-11-464-7272 (ext. 36481)
| |
Collapse
|
12
|
Heinken A, Basile A, Hertel J, Thinnes C, Thiele I. Genome-Scale Metabolic Modeling of the Human Microbiome in the Era of Personalized Medicine. Annu Rev Microbiol 2021; 75:199-222. [PMID: 34314593 DOI: 10.1146/annurev-micro-060221-012134] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human microbiome plays an important role in human health and disease. Meta-omics analyses provide indispensable data for linking changes in microbiome composition and function to disease etiology. Yet, the lack of a mechanistic understanding of, e.g., microbiome-metabolome links hampers the translation of these findings into effective, novel therapeutics. Here, we propose metabolic modeling of microbial communities through constraint-based reconstruction and analysis (COBRA) as a complementary approach to meta-omics analyses. First, we highlight the importance of microbial metabolism in cardiometabolic diseases, inflammatory bowel disease, colorectal cancer, Alzheimer disease, and Parkinson disease. Next, we demonstrate that microbial community modeling can stratify patients and controls, mechanistically link microbes with fecal metabolites altered in disease, and identify host pathways affected by the microbiome. Finally, we outline our vision for COBRA modeling combined with meta-omics analyses and multivariate statistical analyses to inform and guide clinical trials, yield testable hypotheses, and ultimately propose novel dietary and therapeutic interventions. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Almut Heinken
- School of Medicine, National University of Ireland, Galway, H91 TK33, Ireland;
| | - Arianna Basile
- Department of Biology, University of Padua, Padua 35121, Italy
| | - Johannes Hertel
- School of Medicine, National University of Ireland, Galway, H91 TK33, Ireland; .,Department of Psychiatry and Psychotherapy, University of Greifswald, 17489 Greifswald, Germany
| | - Cyrille Thinnes
- School of Medicine, National University of Ireland, Galway, H91 TK33, Ireland;
| | - Ines Thiele
- School of Medicine, National University of Ireland, Galway, H91 TK33, Ireland; .,Division of Microbiology, National University of Ireland, Galway, H91 TK33, Ireland.,APC Microbiome Ireland, University College Cork, Cork, T12 K8AF, Ireland
| |
Collapse
|
13
|
Dumont E, De Bleye C, Rademaker G, Coïc L, Horne J, Sacré PY, Peulen O, Hubert P, Ziemons E. Development of a prototype device for near real-time surface-enhanced Raman scattering monitoring of biological samples. Talanta 2021; 224:121866. [PMID: 33379076 DOI: 10.1016/j.talanta.2020.121866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
With the fast growth of bioanalytical surface-enhanced Raman scattering (SERS), analytical methods have had to adapt to the complex nature of biological samples. In particular, interfering species and protein adsorption onto the SERS substrates have been addressed by sample preparation steps, such as precipitation or extraction, and by smart SERS substrate functionalisation. These additional handling steps however result in irreversible sample alteration, which in turn prevents sample monitoring over time. A new methodology, that enables near real-time, non-invasive and non-destructive SERS monitoring of biological samples, is therefore proposed. It combines solid SERS substrates, benefitting from liquid immersion resistance for extended periods of time, with an original protein filtering device and an on-field detection by means of a handheld Raman analyser. The protein removal device aims at avoiding protein surface fouling on the SERS substrate. It consists of an ultracentrifugation membrane fixed under a cell culture insert for multi-well plates. The inside of the insert is dedicated to containing biological samples. The solid SERS substrate and a simple medium, without any protein, are placed under the insert. By carefully selecting the membrane molecular weight cutoff, selective diffusion of small analytes through the device could be achieved whereas larger proteins were retained inside the insert. Non-invasive SERS spectral acquisition was then carried out through the bottom of the multi-well plate. The diffusion of a SERS probe, 2-mercaptopyridine, and of a neurotransmitter having a less intense SERS signal, serotonin, were first successfully monitored with the device. Then, the latter was applied to distinguish between subclones of cancerous cells through differences in metabolite production. This promising methodology showed a high level of versatility, together with the capability to reduce cellular stress and contamination hazards.
Collapse
Affiliation(s)
- Elodie Dumont
- University of Liege (ULiege), CIRM, VibraSanté Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, CHU, B36, B-4000, Liege, Belgium.
| | - Charlotte De Bleye
- University of Liege (ULiege), CIRM, VibraSanté Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, CHU, B36, B-4000, Liege, Belgium
| | - Gilles Rademaker
- University of Liege (ULiege), Metastasis Research Laboratory, Giga Cancer, CIRM, CHU, B36, B-4000, Liege, Belgium
| | - Laureen Coïc
- University of Liege (ULiege), CIRM, VibraSanté Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, CHU, B36, B-4000, Liege, Belgium
| | - Julie Horne
- University of Liege (ULiege), CIRM, VibraSanté Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, CHU, B36, B-4000, Liege, Belgium
| | - Pierre-Yves Sacré
- University of Liege (ULiege), CIRM, VibraSanté Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, CHU, B36, B-4000, Liege, Belgium
| | - Olivier Peulen
- University of Liege (ULiege), Metastasis Research Laboratory, Giga Cancer, CIRM, CHU, B36, B-4000, Liege, Belgium
| | - Philippe Hubert
- University of Liege (ULiege), CIRM, VibraSanté Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, CHU, B36, B-4000, Liege, Belgium
| | - Eric Ziemons
- University of Liege (ULiege), CIRM, VibraSanté Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, CHU, B36, B-4000, Liege, Belgium
| |
Collapse
|
14
|
Manzi M, Palazzo M, Knott ME, Beauseroy P, Yankilevich P, Giménez MI, Monge ME. Coupled Mass-Spectrometry-Based Lipidomics Machine Learning Approach for Early Detection of Clear Cell Renal Cell Carcinoma. J Proteome Res 2020; 20:841-857. [PMID: 33207877 DOI: 10.1021/acs.jproteome.0c00663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A discovery-based lipid profiling study of serum samples from a cohort that included patients with clear cell renal cell carcinoma (ccRCC) stages I, II, III, and IV (n = 112) and controls (n = 52) was performed using ultraperformance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry and machine learning techniques. Multivariate models based on support vector machines and the LASSO variable selection method yielded two discriminant lipid panels for ccRCC detection and early diagnosis. A 16-lipid panel allowed discriminating ccRCC patients from controls with 95.7% accuracy in a training set under cross-validation and 77.1% accuracy in an independent test set. A second model trained to discriminate early (I and II) from late (III and IV) stage ccRCC yielded a panel of 26 compounds that classified stage I patients from an independent test set with 82.1% accuracy. Thirteen species, including cholic acid, undecylenic acid, lauric acid, LPC(16:0/0:0), and PC(18:2/18:2), identified with level 1 exhibited significantly lower levels in samples from ccRCC patients compared to controls. Moreover, 3α-hydroxy-5α-androstan-17-one 3-sulfate, cis-5-dodecenoic acid, arachidonic acid, cis-13-docosenoic acid, PI(16:0/18:1), PC(16:0/18:2), and PC(O-16:0/20:4) contributed to discriminate early from late ccRCC stage patients. The results are auspicious for early ccRCC diagnosis after validation of the panels in larger and different cohorts.
Collapse
Affiliation(s)
- Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD CABA, Argentina.,Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD Buenos Aires, Argentina
| | - Martín Palazzo
- LM2S, Université de Technologie de Troyes, 12 rue Marie-Curie, CS42060 Troyes, France.,Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Instituto Partner de la Sociedad Max Planck, Godoy Cruz 2390, C1425FQD CABA, Argentina
| | - María Elena Knott
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD CABA, Argentina
| | - Pierre Beauseroy
- LM2S, Université de Technologie de Troyes, 12 rue Marie-Curie, CS42060 Troyes, France
| | - Patricio Yankilevich
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Instituto Partner de la Sociedad Max Planck, Godoy Cruz 2390, C1425FQD CABA, Argentina
| | - María Isabel Giménez
- Departamento de Diagnóstico y Tratamiento, Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB CABA, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD CABA, Argentina
| |
Collapse
|
15
|
Martinefski MR, Elguero B, Knott ME, Gonilski D, Tedesco L, Gurevich Messina JM, Pollak C, Arzt E, Monge ME. Mass Spectrometry-Based Metabolic Fingerprinting Contributes to Unveil the Role of RSUME in Renal Cell Carcinoma Cell Metabolism. J Proteome Res 2020; 20:786-803. [PMID: 33124415 DOI: 10.1021/acs.jproteome.0c00655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a heterogeneous disease with 50-80% patients exhibiting mutations in the von Hippel-Lindau (VHL) gene. RSUME (RWD domain (termed after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases)-containing protein small ubiquitin-related modifier (SUMO) enhancer) acts as a negative regulator of VHL function in normoxia. A discovery-based metabolomics approach was developed by means of ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (MS) for fingerprinting the endometabolome of a human ccRCC cell line 786-O and three other transformed cell systems (n = 102) with different expressions of RSUME and VHL. Cross-validated orthogonal projection to latent structures discriminant analysis models were built on positive, negative, and a combination of positive- and negative-ion mode MS data sets. Discriminant feature panels selected by an iterative multivariate classification allowed differentiating cells with different expressions of RSUME and VHL. Fifteen identified discriminant metabolites with level 1, including glutathione, butyrylcarnitine, and acetylcarnitine, contributed to understand the role of RSUME in ccRCC. Altered pathways associated with the RSUME expression were validated by biological and bioinformatics analyses. Combined results showed that in the absence of VHL, RSUME is involved in the downregulation of the antioxidant defense system, whereas in the presence of VHL, it acts in rerouting energy-related pathways, negatively modulating the lipid utilization, and positively modulating the fatty acid synthesis, which may promote deposition in droplets.
Collapse
Affiliation(s)
- Manuela R Martinefski
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD Ciudad de Buenos Aires, Argentina
| | - Belén Elguero
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - María Elena Knott
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - David Gonilski
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Lucas Tedesco
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Juan M Gurevich Messina
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Cora Pollak
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Ciudad de Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| |
Collapse
|
16
|
Lakshminarayanan H, Rutishauser D, Schraml P, Moch H, Bolck HA. Liquid Biopsies in Renal Cell Carcinoma-Recent Advances and Promising New Technologies for the Early Detection of Metastatic Disease. Front Oncol 2020; 10:582843. [PMID: 33194717 PMCID: PMC7656014 DOI: 10.3389/fonc.2020.582843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) displays a highly varying clinical progression, from slow growing localized tumors to very aggressive metastatic disease (mRCC). Almost a third of all patients with ccRCC show metastatic dissemination at presentation while another third develop metastasis during the course of the disease. Survival rates of mRCC patients remain low despite the development of novel targeted treatment regimens. Biomarkers indicating disease progression could help to define its aggressive potential and thus guide patient management. However, molecular markers that can reliably assess metastatic dissemination and disease recurrence in ccRCC have not been recommended for clinical practice to date. Liquid biopsies could provide an attractive and non-invasive method to determine the risk of recurrence or metastatic dissemination during follow-up and thus assist the search for surveillance biomarkers in ccRCC tumors. A wide spectrum of circulating molecules have already shown considerable potential for ccRCC diagnosis and prognostication. In this review, we outline state of the art of the key circulating analytes such as cfDNA, cfRNA, proteins, and exosomes that may serve as biomarkers for the longitudinal monitoring of ccRCC progression to metastasis. Moreover, we address some of the prevailing limitations in the past approaches and present promising adoptable technologies that could help to pursue the implementation of liquid biopsies as a prognostic tool for mRCC.
Collapse
Affiliation(s)
| | | | | | - Holger Moch
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Hella A. Bolck
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Bacigalupa ZA, Rathmell WK. Beyond glycolysis: Hypoxia signaling as a master regulator of alternative metabolic pathways and the implications in clear cell renal cell carcinoma. Cancer Lett 2020; 489:19-28. [PMID: 32512023 PMCID: PMC7429250 DOI: 10.1016/j.canlet.2020.05.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
The relationship between kidney cancer, specifically clear cell renal cell carcinoma (ccRCC), and the hypoxia signaling program has been extensively characterized. Its underlying role as the primary driver of the disease has led to the development of the most effective targeted therapies to date. Cellular responses to hypoxia or mutations affecting the von Hippel-Lindau (VHL) tumor suppressor gene stabilize the hypoxia inducible factor (HIF) transcription factors which then orchestrate elaborate downstream signaling events resulting in adaptations to key biological processes, such as reprogramming metabolism. The direct link of hypoxia signaling to glucose uptake and glycolysis has long been appreciated; however, the HIF family of proteins directly regulate many downstream targets, including other transcription factors with their own extensive networks. In this review, we will summarize our current understanding of how hypoxia signaling regulates other metabolic pathways and how this contributes to the development and progression of clear cell renal cell carcinomas.
Collapse
Affiliation(s)
- Zachary A Bacigalupa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
18
|
Evaluation of MDA-MB-468 Cell Culture Media Analysis in Predicting Triple-Negative Breast Cancer Patient Sera Metabolic Profiles. Metabolites 2020; 10:metabo10050173. [PMID: 32349447 PMCID: PMC7281562 DOI: 10.3390/metabo10050173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/07/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by limited survival, poor prognosis, and high recurrence. Understanding the metabolic adaptations of TNBC could help reveal improved treatment regiments. Here we performed a comprehensive 1H NMR metabolic characterization of the MDA-MB-468 cell line, a commonly used model of TNBC, followed by an analysis of serum samples obtained from TNBC patients and healthy controls. MDA-MB-468 cells were cultured, and changes in the metabolic composition of the medium were monitored for 72 h. Based on time courses, metabolites were categorized as being consumed, being produced, or showing a mixed behavior. When comparing TNBC and control samples (HC), and by using multivariate and univariate analyses, we identified nine metabolites with differing profiles). The serum of TNBC patients was characterized by higher levels of glucose, glutamine, citrate, and acetoacetate and by lower levels of lactate, alanine, tyrosine, glutamate, and acetone. A comparative analysis between MDA-MB-468 cell culture media and TNBC patients' serum identified a potential systemic response to the carcinogenesis-associated processes, highlighting that MDA-MB-468 cells footprint does not reflect metabolic changes observed in studied TNBC serum fingerprint.
Collapse
|
19
|
Gupta A, Nath K, Bansal N, Kumar M. Role of metabolomics-derived biomarkers to identify renal cell carcinoma: a comprehensive perspective of the past ten years and advancements. Expert Rev Mol Diagn 2019; 20:5-18. [DOI: 10.1080/14737159.2020.1704259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ashish Gupta
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Kavindra Nath
- Department of Radiology, University of Pennsylvania, Pheladelphia, PA, USA
| | - Navneeta Bansal
- Department of Urology, King George’s Medical University, Lucknow, India
| | - Manoj Kumar
- Department of Urology, King George’s Medical University, Lucknow, India
| |
Collapse
|
20
|
Manzi M, Riquelme G, Zabalegui N, Monge ME. Improving diagnosis of genitourinary cancers: Biomarker discovery strategies through mass spectrometry-based metabolomics. J Pharm Biomed Anal 2019; 178:112905. [PMID: 31707200 DOI: 10.1016/j.jpba.2019.112905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
The genitourinary oncology field needs integration of results from basic science, epidemiological studies, clinical and translational research to improve the current methods for diagnosis. MS-based metabolomics can be transformative for disease diagnosis and contribute to global health parity. Metabolite panels are promising to translate metabolomic findings into the clinics, changing the current diagnosis paradigm based on single biomarker analysis. This review article describes capabilities of the MS-based oncometabolomics field for improving kidney, prostate, and bladder cancer detection, early diagnosis, risk stratification, and outcome. Published works are critically discussed based on the study design; type and number of samples analyzed; data quality assessment through quality assurance and quality control practices; data analysis workflows; confidence levels reported for identified metabolites; validation attempts; the overlap of discriminant metabolites for the different genitourinary cancers; and the translation capability of findings into clinical settings. Ongoing challenges are discussed, and future directions are delineated.
Collapse
Affiliation(s)
- Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Ciudad de Buenos Aires, Argentina
| | - Gabriel Riquelme
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Nicolás Zabalegui
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|