1
|
Michael ARM, Amaral BC, Ball KL, Eiriksson KH, Schriemer DC. Cell fixation improves performance of in situ crosslinking mass spectrometry while preserving cellular ultrastructure. Nat Commun 2024; 15:8537. [PMID: 39358380 PMCID: PMC11447256 DOI: 10.1038/s41467-024-52844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Crosslinking mass spectrometry (XL-MS) has the potential to map the interactome of the cell with high resolution and depth of coverage. However, current in vivo XL-MS methods are hampered by crosslinkers that demonstrate low cell permeability and require long reaction times. Consequently, interactome sampling is not high and long incubation times can distort the cell, bringing into question the validity any protein interactions identified by the method. We address these issues with a fast formaldehyde-based fixation method applied prior to the introduction of secondary crosslinkers. Using human A549 cells and a range of reagents, we show that 4% formaldehyde fixation with membrane permeabilization preserves cellular ultrastructure and simultaneously improves reaction conditions for in situ XL-MS. Protein labeling yields can be increased even for nominally membrane-permeable reagents, and surprisingly, high-concentration formaldehyde does not compete with conventional amine-reactive crosslinking reagents. Prefixation with permeabilization uncouples cellular dynamics from crosslinker dynamics, enhancing control over crosslinking yield and permitting the use of any chemical crosslinker.
Collapse
Affiliation(s)
- Andrew R M Michael
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, T2N-4N1, Canada
| | - Bruno C Amaral
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, T2N-4N1, Canada
| | - Kallie L Ball
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, T2N-4N1, Canada
| | - Kristen H Eiriksson
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, T2N-4N1, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, T2N-4N1, Canada.
- Department of Chemistry, University of Calgary, Calgary, Alberta, T2N-4N1, Canada.
| |
Collapse
|
2
|
Stahl K, Graziadei A, Dau T, Brock O, Rappsilber J. Protein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning. Nat Biotechnol 2023; 41:1810-1819. [PMID: 36941363 PMCID: PMC10713450 DOI: 10.1038/s41587-023-01704-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
While AlphaFold2 can predict accurate protein structures from the primary sequence, challenges remain for proteins that undergo conformational changes or for which few homologous sequences are known. Here we introduce AlphaLink, a modified version of the AlphaFold2 algorithm that incorporates experimental distance restraint information into its network architecture. By employing sparse experimental contacts as anchor points, AlphaLink improves on the performance of AlphaFold2 in predicting challenging targets. We confirm this experimentally by using the noncanonical amino acid photo-leucine to obtain information on residue-residue contacts inside cells by crosslinking mass spectrometry. The program can predict distinct conformations of proteins on the basis of the distance restraints provided, demonstrating the value of experimental data in driving protein structure prediction. The noise-tolerant framework for integrating data in protein structure prediction presented here opens a path to accurate characterization of protein structures from in-cell data.
Collapse
Affiliation(s)
- Kolja Stahl
- Robotics and Biology Laboratory, Technische Universität Berlin, Berlin, Germany
| | - Andrea Graziadei
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Therese Dau
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
- Fritz Lipmann Institute, Leibniz Institute on Aging, Jena, Germany
| | - Oliver Brock
- Robotics and Biology Laboratory, Technische Universität Berlin, Berlin, Germany.
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany.
| | - Juri Rappsilber
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany.
- Si-M/'Der Simulierte Mensch', a Science Framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
MacCallum JL, Hu S, Lenz S, Souza PCT, Corradi V, Tieleman DP. An implementation of the Martini coarse-grained force field in OpenMM. Biophys J 2023; 122:2864-2870. [PMID: 37050876 PMCID: PMC10398343 DOI: 10.1016/j.bpj.2023.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/05/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
We describe a complete implementation of Martini 2 and Martini 3 in the OpenMM molecular dynamics software package. Martini is a widely used coarse-grained force field with applications in biomolecular simulation, materials, and broader areas of chemistry. It is implemented as a force field but makes extensive use of facilities unique to the GROMACS software, including virtual sites and bonded terms that are not commonly used in standard atomistic force fields. OpenMM is a flexible molecular dynamics package widely used for methods development and is competitive in speed on GPUs with other commonly used packages. OpenMM has facilities to easily implement new force field terms, external forces and fields, and other nonstandard features, which we use to implement all force field terms used in Martini 2 and Martini 3. This allows Martini simulations, starting with GROMACS topology files that are processed by custom scripts, with all the added flexibility of OpenMM. We provide a GitHub repository with test cases, compare accuracy and performance between GROMACS and OpenMM, and discuss the limitations of our implementation in terms of direct comparison with GROMACS. We describe a use case that implements the Modeling Employing Limited Data method to apply experimental constraints in a Martini simulation to efficiently determine the structure of a protein complex. We also discuss issues and a potential solution with the Martini 2 topology for cholesterol.
Collapse
Affiliation(s)
- Justin L MacCallum
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada; Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada.
| | - Shangnong Hu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada; Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - Stefan Lenz
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada; Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry (MMSB - UMR 5086), CNRS & University of Lyon, Lyon, France
| | - Valentina Corradi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada; Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - D Peter Tieleman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada; Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
4
|
Zhang B, Gao H, Gong Z, Zhao L, Zhong B, Sui Z, Liang Z, Zhang Y, Zhao Q, Zhang L. Improved Cross-Linking Coverage for Protein Complexes Containing Low Levels of Lysine by Using an Enrichable Photo-Cross-Linker. Anal Chem 2023. [PMID: 37303169 DOI: 10.1021/acs.analchem.2c05020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemical cross-linking coupled with mass spectrometry (XL-MS) is an important technique for the structural analysis of protein complexes where the coverage of amino acids and the identification of cross-linked sites are crucial. Photo-cross-linking has multisite reactivity and is valuable for the structural analysis of chemical cross-linking. However, a high degree of heterogeneity results from this multisite reactivity, which results in samples with higher complexity and lower abundance. Additionally, the applicability of photo-cross-linking is limited to purified protein complexes. In this work, we demonstrate a photo-cross-linker, alkynyl-succinimidyl-diazirine (ASD) with the reactive groups of N-hydroxysuccinimide ester and diazirine, as well as the click-enrichable alkyne group. Photo-cross-linkers can provide higher site reactivity for proteins that contain only a small number of lysine residues, thereby complementing the more commonly used lysine-targeting cross-linkers. By systematically analyzing proteins with differing lysine contents and differing flexibilities, we demonstrated clear enhancement in structure elucidation for proteins containing less lysine and with high flexibility. In addition, enrichment approaches of alkynyl-azide click chemistry conjugated with biotin-streptavidin purification (coinciding with parallel orthogonal digestion) improved the identification coverage of cross-links. We show that this photo-cross-linking approach can be used for membrane proteome-wide complex analysis. This method led to the identification of a total of 14066 lysine-X cross-linked site pairs from a total of 2784 proteins. Thus, this cross-linker is a valuable addition to a photo-cross-linking toolkit and improves the identification coverage of XL-MS in functional structure analysis.
Collapse
Affiliation(s)
- Beirong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhou Gong
- CAS Innovation Academy for Precision Measurement Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Chinese Academy of Sciences, Wuhan, Hubei 430071, People's Republic of China
| | - Lili Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bowen Zhong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| |
Collapse
|
5
|
Chen ZA, Rappsilber J. Protein structure dynamics by crosslinking mass spectrometry. Curr Opin Struct Biol 2023; 80:102599. [PMID: 37104977 DOI: 10.1016/j.sbi.2023.102599] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
Crosslinking mass spectrometry captures protein structures in solution. The crosslinks reveal spatial proximities as distance restraints, but do not easily reveal which of these restraints derive from the same protein conformation. This superposition can be reduced by photo-crosslinking, and adding information from protein structure models, or quantitative crosslinking reveals conformation-specific crosslinks. As a consequence, crosslinking MS has proven useful already in the context of multiple dynamic protein systems. We foresee a breakthrough in the resolution and scale of studying protein dynamics when crosslinks are used to guide deep-learning-based protein modelling. Advances in crosslinking MS, such as photoactivatable crosslinking and in-situ crosslinking, will then reveal protein conformation dynamics in the cellular context, at a pseudo-atomic resolution, and plausibly in a time-resolved manner.
Collapse
Affiliation(s)
- Zhuo Angel Chen
- Technische Universität Berlin, Chair of Bioanalytics, 10623 Berlin, Germany
| | - Juri Rappsilber
- Technische Universität Berlin, Chair of Bioanalytics, 10623 Berlin, Germany; Si-M/"Der Simulierte Mensch", a Science Framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, 10623 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
6
|
Lee K, O'Reilly FJ. Cross-linking mass spectrometry for mapping protein complex topologies in situ. Essays Biochem 2023; 67:215-228. [PMID: 36734207 PMCID: PMC10070479 DOI: 10.1042/ebc20220168] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
Cross-linking mass spectrometry has become an established technology to provide structural information on the topology and dynamics of protein complexes. Readily accessible workflows can provide detailed data on simplified systems, such as purified complexes. However, using this technology to study the structure of protein complexes in situ, such as in organelles, cells, and even tissues, is still a technological frontier. The complexity of these systems remains a considerable challenge, but there have been dramatic improvements in sample handling, data acquisition, and data processing. Here, we summarise these developments and describe the paths towards comprehensive and comparative structural interactomes by cross-linking mass spectrometry.
Collapse
Affiliation(s)
- Kitaik Lee
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD 21702-1201, U.S.A
| | - Francis J O'Reilly
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD 21702-1201, U.S.A
| |
Collapse
|
7
|
Rafiei A, Cruz Tetlalmatzi S, Edrington CH, Lee L, Crowder DA, Saltzberg DJ, Sali A, Brouhard G, Schriemer DC. Doublecortin engages the microtubule lattice through a cooperative binding mode involving its C-terminal domain. eLife 2022; 11:66975. [PMID: 35485925 PMCID: PMC9122500 DOI: 10.7554/elife.66975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Doublecortin (DCX) is a microtubule (MT)-associated protein that regulates MT structure and function during neuronal development and mutations in DCX lead to a spectrum of neurological disorders. The structural properties of MT-bound DCX that explain these disorders are incompletely determined. Here, we describe the molecular architecture of the DCX–MT complex through an integrative modeling approach that combines data from X-ray crystallography, cryo-electron microscopy, and a high-fidelity chemical crosslinking method. We demonstrate that DCX interacts with MTs through its N-terminal domain and induces a lattice-dependent self-association involving the C-terminal structured domain and its disordered tail, in a conformation that favors an open, domain-swapped state. The networked state can accommodate multiple different attachment points on the MT lattice, all of which orient the C-terminal tails away from the lattice. As numerous disease mutations cluster in the C-terminus, and regulatory phosphorylations cluster in its tail, our study shows that lattice-driven self-assembly is an important property of DCX.
Collapse
Affiliation(s)
- Atefeh Rafiei
- Department of Chemistry, University of Calgary, Calgary, Canada
| | | | | | - Linda Lee
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - D Alex Crowder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Daniel J Saltzberg
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Gary Brouhard
- Department of Biology, McGill University, Montreal, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| |
Collapse
|
8
|
Rafiei A, Schriemer DC. A Crosslinking Mass Spectrometry Protocol for the Structural Analysis of Microtubule-Associated Proteins. Methods Mol Biol 2022; 2456:211-222. [PMID: 35612744 DOI: 10.1007/978-1-0716-2124-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Microtubule-associated proteins (MAPs) engage microtubules (MTs) to regulate both the MT state and wide variety of cytoskeletal functions. A comprehensive understanding of MAPs function requires the structural characterization of physical contacts MAPs make with other proteins, particularly when engaged with the microtubule (MT) lattice. Most of the interaction between MAPs and MTs evade classical structural determination techniques, as the interactions can be both heterogenous and sub-stoichiometric. Crosslinking mass spectrometry (XL-MS) can aid in MAP-MT structure analysis by providing a wealth of residue-based distance restraints. This protocol provides an XL-MS workflow for accurate and unbiased sampling of an equilibrated MAP-MT interaction, involving modifications to the preparation and validation of a MAP-MT construct suitable for crosslinking with fast-sampling heterobifunctional crosslinkers. The distance restrains obtained by this protocol can be used to generate accurate models assembled with an integrative structural modeling approach.
Collapse
Affiliation(s)
- Atefeh Rafiei
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - David C Schriemer
- Department of Chemistry, University of Calgary, Calgary, AB, Canada.
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Graziadei A, Rappsilber J. Leveraging crosslinking mass spectrometry in structural and cell biology. Structure 2021; 30:37-54. [PMID: 34895473 DOI: 10.1016/j.str.2021.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Crosslinking mass spectrometry (crosslinking-MS) is a versatile tool providing structural insights into protein conformation and protein-protein interactions. Its medium-resolution residue-residue distance restraints have been used to validate protein structures proposed by other methods and have helped derive models of protein complexes by integrative structural biology approaches. The use of crosslinking-MS in integrative approaches is underpinned by progress in estimating error rates in crosslinking-MS data and in combining these data with other information. The flexible and high-throughput nature of crosslinking-MS has allowed it to complement the ongoing resolution revolution in electron microscopy by providing system-wide residue-residue distance restraints, especially for flexible regions or systems. Here, we review how crosslinking-MS information has been leveraged in structural model validation and integrative modeling. Crosslinking-MS has also been a key technology for cell biology studies and structural systems biology where, in conjunction with cryoelectron tomography, it can provide structural and mechanistic insights directly in situ.
Collapse
Affiliation(s)
- Andrea Graziadei
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
10
|
Walport LJ, Low JKK, Matthews JM, Mackay JP. The characterization of protein interactions - what, how and how much? Chem Soc Rev 2021; 50:12292-12307. [PMID: 34581717 DOI: 10.1039/d1cs00548k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein interactions underlie most molecular events in biology. Many methods have been developed to identify protein partners, to measure the affinity with which these biomolecules interact and to characterise the structures of the complexes. Each approach has its own advantages and limitations, and it can be difficult for the newcomer to determine which methodology would best suit their system. This review provides an overview of many of the techniques most widely used to identify protein partners, assess stoichiometry and binding affinity, and determine low-resolution models for complexes. Key methods covered include: yeast two-hybrid analysis, affinity purification mass spectrometry and proximity labelling to identify partners; size-exclusion chromatography, scattering methods, native mass spectrometry and analytical ultracentrifugation to estimate stoichiometry; isothermal titration calorimetry, biosensors and fluorometric methods (including microscale thermophoresis, anisotropy/polarisation, resonance energy transfer, AlphaScreen, and differential scanning fluorimetry) to measure binding affinity; and crosslinking and hydrogen-deuterium exchange mass spectrometry to probe the structure of complexes.
Collapse
Affiliation(s)
- Louise J Walport
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK.,Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.
| | - Jacqueline M Matthews
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
11
|
Ziemianowicz DS, Saltzberg D, Pells T, Crowder DA, Schräder C, Hepburn M, Sali A, Schriemer DC. IMProv: A Resource for Cross-link-Driven Structure Modeling that Accommodates Protein Dynamics. Mol Cell Proteomics 2021; 20:100139. [PMID: 34418567 PMCID: PMC8452774 DOI: 10.1016/j.mcpro.2021.100139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 11/01/2022] Open
Abstract
Proteomics methodology has expanded to include protein structural analysis, primarily through cross-linking mass spectrometry (XL-MS) and hydrogen-deuterium exchange mass spectrometry (HX-MS). However, while the structural proteomics community has effective tools for primary data analysis, there is a need for structure modeling pipelines that are accessible to the proteomics specialist. Integrative structural biology requires the aggregation of multiple distinct types of data to generate models that satisfy all inputs. Here, we describe IMProv, an app in the Mass Spec Studio that combines XL-MS data with other structural data, such as cryo-EM densities and crystallographic structures, for integrative structure modeling on high-performance computing platforms. The resource provides an easily deployed bundle that includes the open-source Integrative Modeling Platform program (IMP) and its dependencies. IMProv also provides functionality to adjust cross-link distance restraints according to the underlying dynamics of cross-linked sites, as characterized by HX-MS. A dynamics-driven conditioning of restraint values can improve structure modeling precision, as illustrated by an integrative structure of the five-membered Polycomb Repressive Complex 2. IMProv is extensible to additional types of data.
Collapse
Affiliation(s)
- Daniel S Ziemianowicz
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Saltzberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, California, USA
| | - Troy Pells
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - D Alex Crowder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christoph Schräder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Morgan Hepburn
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, California, USA
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada; Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
12
|
Gutierrez C, Salituro LJ, Yu C, Wang X, DePeter SF, Rychnovsky SD, Huang L. Enabling Photoactivated Cross-Linking Mass Spectrometric Analysis of Protein Complexes by Novel MS-Cleavable Cross-Linkers. Mol Cell Proteomics 2021; 20:100084. [PMID: 33915260 PMCID: PMC8214149 DOI: 10.1016/j.mcpro.2021.100084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cross-linking mass spectrometry (XL-MS) is a powerful tool for studying protein-protein interactions and elucidating architectures of protein complexes. While residue-specific XL-MS studies have been very successful, accessibility of interaction regions nontargetable by specific chemistries remain difficult. Photochemistry has shown great potential in capturing those regions because of nonspecific reactivity, but low yields and high complexities of photocross-linked products have hindered their identification, limiting current studies predominantly to single proteins. Here, we describe the development of three novel MS-cleavable heterobifunctional cross-linkers, namely SDASO (Succinimidyl diazirine sulfoxide), to enable fast and accurate identification of photocross-linked peptides by MSn. The MSn-based workflow allowed SDASO XL-MS analysis of the yeast 26S proteasome, demonstrating the feasibility of photocross-linking of large protein complexes for the first time. Comparative analyses have revealed that SDASO cross-linking is robust and captures interactions complementary to residue-specific reagents, providing the foundation for future applications of photocross-linking in complex XL-MS studies.
Collapse
Affiliation(s)
- Craig Gutierrez
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Leah J Salituro
- Department of Chemistry, University of California, Irvine, California, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Xiaorong Wang
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Sadie F DePeter
- Department of Chemistry, University of California, Irvine, California, USA
| | - Scott D Rychnovsky
- Department of Chemistry, University of California, Irvine, California, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, California, USA.
| |
Collapse
|
13
|
Jenkins ML, Harris NJ, Dalwadi U, Fleming KD, Ziemianowicz DS, Rafiei A, Martin EM, Schriemer DC, Yip CK, Burke JE. The substrate specificity of the human TRAPPII complex's Rab-guanine nucleotide exchange factor activity. Commun Biol 2020; 3:735. [PMID: 33277614 PMCID: PMC7719173 DOI: 10.1038/s42003-020-01459-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
The TRAnsport Protein Particle (TRAPP) complexes act as Guanine nucleotide exchange factors (GEFs) for Rab GTPases, which are master regulators of membrane trafficking in eukaryotic cells. In metazoans, there are two large multi-protein TRAPP complexes: TRAPPII and TRAPPIII, with the TRAPPII complex able to activate both Rab1 and Rab11. Here we present detailed biochemical characterisation of Rab-GEF specificity of the human TRAPPII complex, and molecular insight into Rab binding. GEF assays of the TRAPPII complex against a panel of 20 different Rab GTPases revealed GEF activity on Rab43 and Rab19. Electron microscopy and chemical cross-linking revealed the architecture of mammalian TRAPPII. Hydrogen deuterium exchange MS showed that Rab1, Rab11 and Rab43 share a conserved binding interface. Clinical mutations in Rab11, and phosphomimics of Rab43, showed decreased TRAPPII GEF mediated exchange. Finally, we designed a Rab11 mutation that maintained TRAPPII-mediated GEF activity while decreasing activity of the Rab11-GEF SH3BP5, providing a tool to dissect Rab11 signalling. Overall, our results provide insight into the GTPase specificity of TRAPPII, and how clinical mutations disrupt this regulation. Here the authors reveal unique structural organization of the mammalian TRAPPII complex, which is critical in regulating membrane trafficking. They find that TRAPPII serves as a guanine nucleotide exchange factor for unexpected Rab GTPases such as Rab43 and Rab19.
Collapse
Affiliation(s)
- Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Udit Dalwadi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Daniel S Ziemianowicz
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Atefeh Rafiei
- Department of Chemistry, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Emily M Martin
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Department of Chemistry, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada. .,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
14
|
Belsom A, Rappsilber J. Anatomy of a crosslinker. Curr Opin Chem Biol 2020; 60:39-46. [PMID: 32829152 DOI: 10.1016/j.cbpa.2020.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
Crosslinking mass spectrometry has become a core technology in structural biology and is expanding its reach towards systems biology. Its appeal lies in a rapid workflow, high sensitivity and the ability to provide data on proteins in complex systems, even in whole cells. The technology depends heavily on crosslinking reagents. The anatomy of crosslinkers can be modular, sometimes comprising combinations of functional groups. These groups are defined by concepts including: reaction selectivity to increase information density, enrichability to improve detection, cleavability to enhance the identification process and isotope-labelling for quantification. Here, we argue that both concepts and functional groups need more thorough experimental evaluation, so that we can show exactly how and where they are useful when applied to crosslinkers. Crosslinker design should be driven by data, not only concepts. We focus on two crosslinker concepts with large consequences for the technology, namely reactive group reaction kinetics and enrichment groups.
Collapse
Affiliation(s)
- Adam Belsom
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
15
|
Ziemianowicz DS, Sarpe V, Crowder D, Pells TJ, Raval S, Hepburn M, Rafiei A, Schriemer DC. Harmonizing structural mass spectrometry analyses in the mass spec studio. J Proteomics 2020; 225:103844. [DOI: 10.1016/j.jprot.2020.103844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 01/06/2023]
|
16
|
Evaluation of chemical cross-linkers for in-depth structural analysis of G protein-coupled receptors through cross-linking mass spectrometry. Anal Chim Acta 2020; 1102:53-62. [DOI: 10.1016/j.aca.2019.12.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 01/05/2023]
|
17
|
Ziemianowicz DS, MacCallum JL, Schriemer DC. Correlation between Labeling Yield and Surface Accessibility in Covalent Labeling Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:207-216. [PMID: 32031402 DOI: 10.1021/jasms.9b00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The functional properties of a protein are strongly influenced by its topography, or the solvent-facing contour map of its surface. Together with crosslinking, covalent labeling mass spectrometry (CL-MS) has the potential to contribute topographical data through the measurement of surface accessibility. However, recent efforts to correlate measures of surface accessibility with labeling yield have been met with mixed success. Most applications of CL-MS involve differential analysis of protein interactions (i.e., footprinting experiments) where such inconsistencies have limited effect. Extending CL-MS into structural analysis requires an improved evaluation of the relationship between labeling and surface exposure. In this study, we applied recently developed diazirine reagents to obtain deep coverage of the large motor domain of Eg5 (a mitotic kinesin), and together with computational methods we correlated labeling yields with accessibility data in a number of ways. We observe that correlations can indeed be seen at a local structural level, but these correlations do not extend across the structure. The lack of correlation arises from the influence of protein dynamics and chemical composition on reagent partitioning and, thus, also on labeling yield. We conclude that our use of CL-MS data should be considered in light of "chemical accessibility" rather than "solvent accessibility" and suggest that CL-MS data would be a useful tool in the fundamental study of protein-solute interactions.
Collapse
Affiliation(s)
- Daniel S Ziemianowicz
- Department of Biochemistry and Molecular Biology , University of Calgary , Calgary , Alberta , Canada T2N 4N1
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute , University of Calgary , Calgary , Alberta , Canada T2N 4N1
| | - Justin L MacCallum
- Department of Chemistry , University of Calgary , Calgary , Alberta , Canada T2N 4N1
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology , University of Calgary , Calgary , Alberta , Canada T2N 4N1
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute , University of Calgary , Calgary , Alberta , Canada T2N 4N1
- Department of Chemistry , University of Calgary , Calgary , Alberta , Canada T2N 4N1
| |
Collapse
|
18
|
Rafiei A, Schriemer DC. A microtubule crosslinking protocol for integrative structural modeling activities. Anal Biochem 2019; 586:113416. [PMID: 31499019 DOI: 10.1016/j.ab.2019.113416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 11/15/2022]
Abstract
Microtubules (MTs) are key components in the cytoskeleton of the eukaryotic cell, and play roles in processes such as intracellular transport and cell division. An improved understanding MT regulation requires structural analysis of the extensive interactions between the MT lattice and its regulatory proteins, but MT interactions are challenging for even the most advanced structural methods to characterize. Integrative methods involving crosslinking mass spectrometry (XL-MS) can extend structural analysis to many interaction classes, but the representation of MTs in crosslinking data-sets has been surprisingly low. Here, we explore the basis for the underrepresentation of the MT lattice and present an enhanced method for mapping MT structural features using an optimized set of reagents, together with fluorescence detection to ensure MT structural integrity. Through the application of stringent identification criteria, 91 unique crosslinks were identified, 78 of which were uniquely matched to 7 distinct structural features of the MT lattice. Of note, 4 crosslinks were detected for the lattice-A protofilament organization. The lattice-A structure defines a "seam" or discontinuity in MTs and is an emerging site of interest for MT regulation. Our methodology should be broadly applicable to integrative structural studies involving any MT-protein interaction.
Collapse
Affiliation(s)
- Atefeh Rafiei
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - David C Schriemer
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada.
| |
Collapse
|
19
|
Fujimoto K, Yamaguchi T, Inatsugi T, Takamura M, Ishimaru I, Koto A, Nakamura S. DNA photo-cross-linking using a pyranocarbazole-modified oligodeoxynucleotide with a d-threoninol linker. RSC Adv 2019; 9:30693-30697. [PMID: 35529377 PMCID: PMC9072208 DOI: 10.1039/c9ra06145b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/12/2019] [Indexed: 01/17/2023] Open
Abstract
An alternative more efficient photo-cross-linker having a d-threoninol skeleton instead of the 2′-deoxyribose backbone in pyranocarbazole was investigated to improve the photoreactivity of photo-cross-linkers.
Collapse
Affiliation(s)
- Kenzo Fujimoto
- Department of Advanced Institute Science and Technology
- Japan Advanced Institute of Science and Technology
- Japan
| | - Tsubasa Yamaguchi
- Department of Advanced Institute Science and Technology
- Japan Advanced Institute of Science and Technology
- Japan
| | - Takahiro Inatsugi
- Advanced Materials Research Laboratory
- Advanced Technology Research Department
- In statute of Surface Science and Technology
- NICCA CHEMICAL CO., LTD
- Fukui-City
| | - Masahiko Takamura
- Advanced Materials Research Laboratory
- Advanced Technology Research Department
- In statute of Surface Science and Technology
- NICCA CHEMICAL CO., LTD
- Fukui-City
| | - Isao Ishimaru
- Advanced Materials Research Laboratory
- Advanced Technology Research Department
- In statute of Surface Science and Technology
- NICCA CHEMICAL CO., LTD
- Fukui-City
| | - Ayako Koto
- Advanced Materials Research Laboratory
- Advanced Technology Research Department
- In statute of Surface Science and Technology
- NICCA CHEMICAL CO., LTD
- Fukui-City
| | - Shigetaka Nakamura
- Department of Advanced Institute Science and Technology
- Japan Advanced Institute of Science and Technology
- Japan
| |
Collapse
|