1
|
Bizen N, Takebayashi H. Diverse functions of DEAD-box proteins in oligodendrocyte development, differentiation, and homeostasis. J Neurochem 2025; 169:e16238. [PMID: 39374171 DOI: 10.1111/jnc.16238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Oligodendrocytes, a type of glial cell in the central nervous system, have a critical role in the formation of myelin around axons, facilitating saltatory conduction, and maintaining the integrity of nerve axons. The dysregulation of oligodendrocyte differentiation and homeostasis have been implicated in a wide range of neurological diseases, including dysmyelinating disorders (e.g., Pelizaeus-Merzbacher disease), demyelinating diseases (e.g., multiple sclerosis), Alzheimer's disease, and psychiatric disorders. Therefore, unraveling the mechanisms of oligodendrocyte development, differentiation, and homeostasis is essential for understanding the pathogenesis of these diseases and the development of therapeutic interventions. Numerous studies have identified and analyzed the functions of transcription factors, RNA metabolic factors, translation control factors, and intracellular and extracellular signals involved in the series of processes from oligodendrocyte fate determination to terminal differentiation. DEAD-box proteins, multifunctional RNA helicases that regulate various intracellular processes, including transcription, RNA processing, and translation, are increasingly recognized for their diverse roles in various aspects of oligodendrocyte development, differentiation, and maintenance of homeostasis. This review introduces the latest insights into the regulatory networks of oligodendrocyte biology mediated by DEAD-box proteins.
Collapse
Affiliation(s)
- Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Bayat L, Abbasi S, Balasuriya N, Schild-Poulter C. Critical residues in the Ku70 von Willebrand A domain mediate Ku interaction with the LigIV-XRCC4 complex in non-homologous end-joining. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119815. [PMID: 39151475 DOI: 10.1016/j.bbamcr.2024.119815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The Ku heterodimer (Ku70/Ku80) is central to the non-homologous end-joining (NHEJ) pathway. Ku binds to the broken DNA ends and promotes the assembly of the DNA repair complex. The N-terminal Ku70 von Willebrand A (vWA) domain is known to mediate protein-protein interactions important for the repair process. In particular, the D192 and D195 residues within helix 5 of the Ku70 vWA domain were shown to be essential for NHEJ function, although the precise role of these residues was not identified. Here, we set up a miniTurbo screening system to identify Ku70 D192/D195 residue-specific interactors in a conditional, human Ku70-knockout cell line in response to DNA damage. Using fusion protein constructs of Ku70 wild-type and mutant (D192A/D195R) with miniTurbo, we identified a number of candidate proximal interactors in response to DNA damage treatment, including DNA Ligase IV (LigIV), a known and essential NHEJ complex member. Interestingly, LigIV was enriched in our wildtype screen but not the Ku70 D192A/D195R screen, suggesting its interaction is disrupted by the mutation. Validation experiments demonstrated that the DNA damage-induced interaction between Ku70 and LigIV was disrupted by the Ku70 D192A/D195R mutations. Our findings provide greater detail about the interaction surface between the Ku70 vWA domain and LigIV and offer strong evidence that the D192 and D195 residues are important for NHEJ completion through an interaction with LigIV. Altogether, this work reveals novel potential proximal interactors of Ku in response to DNA damage and identifies Ku70 D192/D195 residues as essential for LigIV interaction with Ku during NHEJ.
Collapse
Affiliation(s)
- Laila Bayat
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Sanna Abbasi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Nileeka Balasuriya
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
3
|
Ferrão Maciel-Fiuza M, Rengel BD, Wachholz GE, do Amaral Gomes J, de Oliveira MR, Kowalski TW, Roehe PM, Luiz Vianna FS, Schüler-Faccini L, Mayer FQ, Varela APM, Fraga LR. New candidate genes potentially involved in Zika virus teratogenesis. Comput Biol Med 2024; 173:108259. [PMID: 38522248 DOI: 10.1016/j.compbiomed.2024.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Despite efforts to elucidate Zika virus (ZIKV) teratogenesis, still several issues remain unresolved, particularly on the molecular mechanisms behind the pathogenesis of Congenital Zika Syndrome (CZS). To answer this question, we used bioinformatics tools, animal experiments and human gene expression analysis to investigate genes related to brain development potentially involved in CZS. Searches in databases for genes related to brain development and CZS were performed, and a protein interaction network was created. The expression of these genes was analyzed in a CZS animal model and secondary gene expression analysis (DGE) was performed in human cells exposed to ZIKV. A total of 2610 genes were identified in the databases, of which 1013 were connected. By applying centrality statistics of the global network, 36 candidate genes were identified, which, after selection resulted in nine genes. Gene expression analysis revealed distinctive expression patterns for PRKDC, PCNA, ATM, SMC3 as well as for FGF8 and SHH in the CZS model. Furthermore, DGE analysis altered expression of ATM, PRKDC, PCNA. In conclusion, systems biology are helpful tools to identify candidate genes to be validated in vitro and in vivo. PRKDC, PCNA, ATM, SMC3, FGF8 and SHH have altered expression in ZIKV-induced brain malformations.
Collapse
Affiliation(s)
- Miriãn Ferrão Maciel-Fiuza
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna Duarte Rengel
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Gabriela Elis Wachholz
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Julia do Amaral Gomes
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maikel Rosa de Oliveira
- Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thayne Woycinck Kowalski
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Teratogen Information System, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Bioinformatics Core, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Centro Universitário CESUCA, Cachoeirinha, Brazil
| | - Paulo Michel Roehe
- Department of Microbiology, Immunology and Parasitology, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Teratogen Information System, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil; Teratogen Information System, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Fabiana Quoos Mayer
- Graduate Program in Molecular and Cellular Biology, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Muterle Varela
- Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.
| | - Lucas Rosa Fraga
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Teratogen Information System, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Killelea T, Kemm FE, He L, Rudolph CJ, Bolt EL. Repurposing Proximity-Dependent Protein Labeling (BioID2) for Protein Interaction Mapping in E. coli. Methods Mol Biol 2024; 2828:87-106. [PMID: 39147973 DOI: 10.1007/978-1-0716-4023-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Methods that identify protein-protein interactions are essential for understanding molecular mechanisms controlling biological systems. Proximity-dependent labeling has proven to be a valuable method for revealing protein-protein interaction networks in living cells. A mutant form of the biotin protein ligase enzyme from Aquifex aeolicus (BioID2) underpins this methodology by producing biotin that is attached to proteins that enter proximity to it. This labels proteins for capture, extraction, and identification. In this chapter, we present a toolkit for BioID2 specifically adapted for use in E. coli, exemplified by the chemotaxis protein CheA. We have created plasmids containing BioID2 as expression cassettes for proteins (e.g., CheA) fused to BioID2 at either the N or C terminus, optimized with an 8 × GGS linker. We provide a methodology for expression and verification of CheA-BioID2 fusion proteins in E. coli cells, the in vivo biotinylation of interactors by protein-BioID2 fusions, and extraction and analysis of interacting proteins that have been biotinylated.
Collapse
Affiliation(s)
- Tom Killelea
- School of Life Sciences, University of Nottingham, Nottingham, UK.
| | - Fiona E Kemm
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Liu He
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Edward L Bolt
- School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
5
|
Cowell IG, Casement JW, Austin CA. To Break or Not to Break: The Role of TOP2B in Transcription. Int J Mol Sci 2023; 24:14806. [PMID: 37834253 PMCID: PMC10573011 DOI: 10.3390/ijms241914806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Transcription and its regulation pose challenges related to DNA torsion and supercoiling of the DNA template. RNA polymerase tracking the helical groove of the DNA introduces positive helical torsion and supercoiling upstream and negative torsion and supercoiling behind its direction of travel. This can inhibit transcriptional elongation and other processes essential to transcription. In addition, chromatin remodeling associated with gene activation can generate or be hindered by excess DNA torsional stress in gene regulatory regions. These topological challenges are solved by DNA topoisomerases via a strand-passage reaction which involves transiently breaking and re-joining of one (type I topoisomerases) or both (type II topoisomerases) strands of the phosphodiester backbone. This review will focus on one of the two mammalian type II DNA topoisomerase enzymes, DNA topoisomerase II beta (TOP2B), that have been implicated in correct execution of developmental transcriptional programs and in signal-induced transcription, including transcriptional activation by nuclear hormone ligands. Surprisingly, several lines of evidence indicate that TOP2B-mediated protein-free DNA double-strand breaks are involved in signal-induced transcription. We discuss the possible significance and origins of these DSBs along with a network of protein interaction data supporting a variety of roles for TOP2B in transcriptional regulation.
Collapse
Affiliation(s)
- Ian G. Cowell
- Biosciences Institute, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - John W. Casement
- Bioinformatics Support Unit, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Caroline A. Austin
- Biosciences Institute, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
6
|
Zhu Y, Liu Z, Gui L, Yun W, Mao C, Deng R, Yao Y, Yu Q, Feng J, Ma H, Bao W. Inhibition of CXorf56 promotes PARP inhibitor-induced cytotoxicity in triple-negative breast cancer. NPJ Breast Cancer 2023; 9:34. [PMID: 37156759 PMCID: PMC10167262 DOI: 10.1038/s41523-023-00540-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPis) induce DNA lesions that preferentially kill homologous recombination (HR)-deficient breast cancers induced by BRCA mutations, which exhibit a low incidence in breast cancer, thereby limiting the benefits of PARPis. Additionally, breast cancer cells, particularly triple-negative breast cancer (TNBC) cells, exhibit HR and PARPi resistance. Therefore, targets must be identified for inducing HR deficiency and sensitizing cancer cells to PARPis. Here, we reveal that CXorf56 protein increased HR repair in TNBC cells by interacting with the Ku70 DNA-binding domain, reducing Ku70 recruitment and promoting RPA32, BRCA2, and RAD51 recruitment to sites of DNA damage. Knockdown of CXorf56 protein suppressed HR in TNBC cells, specifically during the S and G2 phases, and increased cell sensitivity to olaparib in vitro and in vivo. Clinically, CXorf56 protein was upregulated in TNBC tissues and associated with aggressive clinicopathological characteristics and poor survival. All these findings indicate that treatment designed to inhibit CXorf56 protein in TNBC combined with PARPis may overcome drug resistance and expand the application of PARPis to patients with non-BRCA mutantion.
Collapse
Affiliation(s)
- Ying Zhu
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhixian Liu
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Gui
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Yun
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Changfei Mao
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Deng
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yufeng Yao
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Qiao Yu
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Wei Bao
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
7
|
Abbasi S, Bayat L, Schild-Poulter C. Analysis of Ku70 S155 Phospho-Specific BioID2 Interactome Identifies Ku Association with TRIP12 in Response to DNA Damage. Int J Mol Sci 2023; 24:ijms24087041. [PMID: 37108203 PMCID: PMC10138931 DOI: 10.3390/ijms24087041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The Ku heterodimer, composed of subunits Ku70 and Ku80, is known for its essential role in repairing double-stranded DNA breaks via non-homologous end joining (NHEJ). We previously identified Ku70 S155 as a novel phosphorylation site within the von Willebrand A-like (vWA) domain of Ku70 and documented an altered DNA damage response in cells expressing a Ku70 S155D phosphomimetic mutant. Here, we conducted proximity-dependent biotin identification (BioID2) screening using wild-type Ku70, Ku70 S155D mutant, and Ku70 with a phosphoablative substitution (S155A) to identify Ku70 S155D-specific candidate proteins that may rely on this phosphorylation event. Using the BioID2 screen with multiple filtering approaches, we compared the protein interactor candidate lists for Ku70 S155D and S155A. TRIP12 was exclusive to the Ku70 S155D list, considered a high confidence interactor based on SAINTexpress analysis, and appeared in all three biological replicates of the Ku70 S155D-BioID2 mass spectrometry results. Using proximity ligation assays (PLA), we demonstrated a significantly increased association between Ku70 S155D-HA and TRIP12 compared to wild-type Ku70-HA cells. In addition, we were able to demonstrate a robust PLA signal between endogenous Ku70 and TRIP12 in the presence of double-stranded DNA breaks. Finally, co-immunoprecipitation analyses showed an enhanced interaction between TRIP12 and Ku70 upon treatment with ionizing radiation, suggesting a direct or indirect association in response to DNA damage. Altogether, these results suggest an association between Ku70 phospho-S155 and TRIP12.
Collapse
Affiliation(s)
- Sanna Abbasi
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Laila Bayat
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
8
|
Kusuma FK, Prabhu A, Tieo G, Ahmed SM, Dakle P, Yong WK, Pathak E, Madan V, Jiang YY, Tam WL, Kappei D, Dröge P, Koeffler HP, Jeitany M. Signalling inhibition by ponatinib disrupts productive alternative lengthening of telomeres (ALT). Nat Commun 2023; 14:1919. [PMID: 37024489 PMCID: PMC10079688 DOI: 10.1038/s41467-023-37633-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Alternative lengthening of telomeres (ALT) supports telomere maintenance in 10-15% of cancers, thus representing a compelling target for therapy. By performing anti-cancer compound library screen on isogenic cell lines and using extrachromosomal telomeric C-circles, as a bona fide marker of ALT activity, we identify a receptor tyrosine kinase inhibitor ponatinib that deregulates ALT mechanisms, induces telomeric dysfunction, reduced ALT-associated telomere synthesis, and targets, in vivo, ALT-positive cells. Using RNA-sequencing and quantitative phosphoproteomic analyses, combined with C-circle level assessment, we find an ABL1-JNK-JUN signalling circuit to be inhibited by ponatinib and to have a role in suppressing telomeric C-circles. Furthermore, transcriptome and interactome analyses suggest a role of JUN in DNA damage repair. These results are corroborated by synergistic drug interactions between ponatinib and either DNA synthesis or repair inhibitors, such as triciribine. Taken together, we describe here a signalling pathway impacting ALT which can be targeted by a clinically approved drug.
Collapse
Affiliation(s)
- Frances Karla Kusuma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Aishvaryaa Prabhu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Galen Tieo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Syed Moiz Ahmed
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wai Khang Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elina Pathak
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yan Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Wai Leong Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Hospital, Singapore, Singapore
| | - Maya Jeitany
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
9
|
Gaudreau-Lapierre A, Klonisch T, Nicolas H, Thanasupawat T, Trinkle-Mulcahy L, Hombach-Klonisch S. Nuclear High Mobility Group A2 (HMGA2) Interactome Revealed by Biotin Proximity Labeling. Int J Mol Sci 2023; 24:ijms24044246. [PMID: 36835656 PMCID: PMC9966875 DOI: 10.3390/ijms24044246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
The non-histone chromatin binding protein High Mobility Group AT-hook protein 2 (HMGA2) has important functions in chromatin remodeling, and genome maintenance and protection. Expression of HMGA2 is highest in embryonic stem cells, declines during cell differentiation and cell aging, but it is re-expressed in some cancers, where high HMGA2 expression frequently coincides with a poor prognosis. The nuclear functions of HMGA2 cannot be explained by binding to chromatin alone but involve complex interactions with other proteins that are incompletely understood. The present study used biotin proximity labeling, followed by proteomic analysis, to identify the nuclear interaction partners of HMGA2. We tested two different biotin ligase HMGA2 constructs (BioID2 and miniTurbo) with similar results, and identified known and new HMGA2 interaction partners, with functionalities mainly in chromatin biology. These HMGA2 biotin ligase fusion constructs offer exciting new possibilities for interactome discovery research, enabling the monitoring of nuclear HMGA2 interactomes during drug treatments.
Collapse
Affiliation(s)
- Antoine Gaudreau-Lapierre
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hannah Nicolas
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: ; Tel.: +1-204-789-3982; Fax: +1-204-789-3920
| |
Collapse
|
10
|
Bader AS, Luessing J, Hawley BR, Skalka GL, Lu WT, Lowndes N, Bushell M. DDX17 is required for efficient DSB repair at DNA:RNA hybrid deficient loci. Nucleic Acids Res 2022; 50:10487-10502. [PMID: 36200807 PMCID: PMC9561282 DOI: 10.1093/nar/gkac843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Proteins with RNA-binding activity are increasingly being implicated in DNA damage responses (DDR). Additionally, DNA:RNA-hybrids are rapidly generated around DNA double-strand breaks (DSBs), and are essential for effective repair. Here, using a meta-analysis of proteomic data, we identify novel DNA repair proteins and characterise a novel role for DDX17 in DNA repair. We found DDX17 to be required for both cell survival and DNA repair in response to numerous agents that induce DSBs. Analysis of DSB repair factor recruitment to damage sites suggested a role for DDX17 early in the DSB ubiquitin cascade. Genome-wide mapping of R-loops revealed that while DDX17 promotes the formation of DNA:RNA-hybrids around DSB sites, this role is specific to loci that have low levels of pre-existing hybrids. We propose that DDX17 facilitates DSB repair at loci that are inefficient at forming DNA:RNA-hybrids by catalysing the formation of DSB-induced hybrids, thereby allowing propagation of the damage response.
Collapse
Affiliation(s)
- Aldo S Bader
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Janna Luessing
- Centre for Chromosome Biology, Biomedical Sciences Biulding (BSB), School of Biological & Checmical Sciences, University of Galway, Galway, H91W2TY, Ireland
| | - Ben R Hawley
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | | | - Wei-Ting Lu
- The Francis Crick Institute, London NW1 1AT, UK
| | - Noel F Lowndes
- Centre for Chromosome Biology, Biomedical Sciences Biulding (BSB), School of Biological & Checmical Sciences, University of Galway, Galway, H91W2TY, Ireland
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
11
|
Patricio DDO, Dias GBM, Granella LW, Trigg B, Teague HC, Bittencourt D, Báfica A, Zanotto-Filho A, Ferguson B, Mansur DS. DNA-PKcs restricts Zika virus spreading and is required for effective antiviral response. Front Immunol 2022; 13:1042463. [PMID: 36311766 PMCID: PMC9606669 DOI: 10.3389/fimmu.2022.1042463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 04/23/2024] Open
Abstract
Zika virus (ZIKV) is a single-strand RNA mosquito-borne flavivirus with significant public health impact. ZIKV infection induces double-strand DNA breaks (DSBs) in human neural progenitor cells that may contribute to severe neuronal manifestations in newborns. The DNA-PK complex plays a critical role in repairing DSBs and in the innate immune response to infection. It is unknown, however, whether DNA-PK regulates ZIKV infection. Here we investigated the role of DNA-PKcs, the catalytic subunit of DNA-PK, during ZIKV infection. We demonstrate that DNA-PKcs restricts the spread of ZIKV infection in human epithelial cells. Increased ZIKV replication and spread in DNA-PKcs deficient cells is related to a notable decrease in transcription of type I and III interferons as well as IFIT1, IFIT2, and IL6. This was shown to be independent of IRF1, IRF3, or p65, canonical transcription factors necessary for activation of both type I and III interferon promoters. The mechanism of DNA-PKcs to restrict ZIKV infection is independent of DSB. Thus, these data suggest a non-canonical role for DNA-PK during Zika virus infection, acting downstream of IFNs transcription factors for an efficient antiviral immune response.
Collapse
Affiliation(s)
- Daniel de Oliveira Patricio
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Greicy Brisa Malaquias Dias
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lucilene Wildner Granella
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ben Trigg
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Dina Bittencourt
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - André Báfica
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Alfeu Zanotto-Filho
- Laboratório de Farmacologia e Bioquímica do Câncer, Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Brian Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
12
|
Dhoonmoon A, Nicolae CM, Moldovan GL. The KU-PARP14 axis differentially regulates DNA resection at stalled replication forks by MRE11 and EXO1. Nat Commun 2022; 13:5063. [PMID: 36030235 PMCID: PMC9420157 DOI: 10.1038/s41467-022-32756-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Suppression of nascent DNA degradation has emerged as an essential role of the BRCA pathway in genome protection. In BRCA-deficient cells, the MRE11 nuclease is responsible for both resection of reversed replication forks, and accumulation of single stranded DNA gaps behind forks. Here, we show that the mono-ADP-ribosyltransferase PARP14 is a critical co-factor of MRE11. PARP14 is recruited to nascent DNA upon replication stress in BRCA-deficient cells, and through its catalytic activity, mediates the engagement of MRE11. Loss or inhibition of PARP14 suppresses MRE11-mediated fork degradation and gap accumulation, and promotes genome stability and chemoresistance of BRCA-deficient cells. Moreover, we show that the KU complex binds reversed forks and protects them against EXO1-catalyzed degradation. KU recruits the PARP14-MRE11 complex, which initiates partial resection to release KU and allow long-range resection by EXO1. Our work identifies a multistep process of nascent DNA processing at stalled replication forks in BRCA-deficient cells. Protection of replication forks against nucleolytic degradation is crucial for genome stability. Here, Dhoonmoon et al identify PARP14 and the KU complex as essential regulators of fork degradation by MRE11 and EXO1 nucleases in BRCA-deficient cells.
Collapse
Affiliation(s)
- Ashna Dhoonmoon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
13
|
Hu S, Ouyang J, Zheng G, Lu Y, Zhu Q, Wang B, Ye L, Zhu C. Identification of mutant p53-specific proteins interaction network using TurboID-based proximity labeling. Biochem Biophys Res Commun 2022; 615:163-171. [DOI: 10.1016/j.bbrc.2022.05.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 01/22/2023]
|
14
|
Abstract
Transcription factors (TFs) interact with several other proteins in the process of transcriptional regulation. Here, we identify 6703 and 1536 protein–protein interactions for 109 different human TFs through proximity-dependent biotinylation (BioID) and affinity purification mass spectrometry (AP-MS), respectively. The BioID analysis identifies more high-confidence interactions, highlighting the transient and dynamic nature of many of the TF interactions. By performing clustering and correlation analyses, we identify subgroups of TFs associated with specific biological functions, such as RNA splicing or chromatin remodeling. We also observe 202 TF-TF interactions, of which 118 are interactions with nuclear factor 1 (NFI) family members, indicating uncharacterized cross-talk between NFI signaling and other TF signaling pathways. Moreover, TF interactions with basal transcription machinery are mainly observed through TFIID and SAGA complexes. This study provides a rich resource of human TF interactions and also act as a starting point for future studies aimed at understanding TF-mediated transcription. Transcription factors (TFs) interact with several other proteins in the process of transcriptional regulation. Here the authors identify 6703 and 1536 protein–protein interactions for 109 different human TFs through BioID and AP-MS analyses, respectively.
Collapse
|
15
|
Poláková E, Albanaz ATS, Zakharova A, Novozhilova TS, Gerasimov ES, Yurchenko V. Ku80 is involved in telomere maintenance but dispensable for genomic stability in Leishmania mexicana. PLoS Negl Trop Dis 2021; 15:e0010041. [PMID: 34965251 PMCID: PMC8716037 DOI: 10.1371/journal.pntd.0010041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Telomeres are indispensable for genome stability maintenance. They are maintained by the telomere-associated protein complex, which include Ku proteins and a telomerase among others. Here, we investigated a role of Ku80 in Leishmania mexicana. Leishmania is a genus of parasitic protists of the family Trypanosomatidae causing a vector-born disease called leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS We used the previously established CRISPR/Cas9 system to mediate ablation of Ku80- and Ku70-encoding genes in L. mexicana. Complete knock-outs of both genes were confirmed by Southern blotting, whole-genome Illumina sequencing, and RT-qPCR. Resulting telomeric phenotypes were subsequently investigated using Southern blotting detection of terminal restriction fragments. The genome integrity in the Ku80- deficient cells was further investigated by whole-genome sequencing. Our work revealed that telomeres in the ΔKu80 L. mexicana are elongated compared to those of the wild type. This is a surprising finding considering that in another model trypanosomatid, Trypanosoma brucei, they are shortened upon ablation of the same gene. A telomere elongation phenotype has been documented in other species and associated with a presence of telomerase-independent alternative telomere lengthening pathway. Our results also showed that Ku80 appears to be not involved in genome stability maintenance in L. mexicana. CONCLUSION/SIGNIFICANCE Ablation of the Ku proteins in L. mexicana triggers telomere elongation, but does not have an adverse impact on genome integrity.
Collapse
Affiliation(s)
- Ester Poláková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Amanda T. S. Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | | | - Evgeny S. Gerasimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
16
|
Cargill M, Venkataraman R, Lee S. DEAD-Box RNA Helicases and Genome Stability. Genes (Basel) 2021; 12:1471. [PMID: 34680866 PMCID: PMC8535883 DOI: 10.3390/genes12101471] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
DEAD-box RNA helicases are important regulators of RNA metabolism and have been implicated in the development of cancer. Interestingly, these helicases constitute a major recurring family of RNA-binding proteins important for protecting the genome. Current studies have provided insight into the connection between genomic stability and several DEAD-box RNA helicase family proteins including DDX1, DDX3X, DDX5, DDX19, DDX21, DDX39B, and DDX41. For each helicase, we have reviewed evidence supporting their role in protecting the genome and their suggested mechanisms. Such helicases regulate the expression of factors promoting genomic stability, prevent DNA damage, and can participate directly in the response and repair of DNA damage. Finally, we summarized the pathological and therapeutic relationship between DEAD-box RNA helicases and cancer with respect to their novel role in genome stability.
Collapse
Affiliation(s)
- Michael Cargill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Rasika Venkataraman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Stanley Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Bader AS, Bushell M. Damage-Net: A program for DNA repair meta-analysis identifies a network of novel repair genes that facilitate cancer evolution. DNA Repair (Amst) 2021; 105:103158. [PMID: 34147942 PMCID: PMC8385418 DOI: 10.1016/j.dnarep.2021.103158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
The advent of genome-wide methods for identifying novel components in biological processes including CRISPR screens and proteomic studies, has transformed the research landscape within the biological sciences. However, each study normally investigates a single aspect of a process without integration of other published datasets. Here, we present Damage-Net, a program with a curated database of published results from a broad range of studies investigating DNA repair, that facilitates simple and quick meta-analysis. Users can incorporate their own datasets for analysis, and query genes of interest in the database. Importantly, this program also allows users to examine the correlation of genes of interest with pan-cancer patient survival and mutational burden effects. Interrogating these datasets revealed a network of genes that associated with cancer progression in adrenocortical carcinoma via facilitating mutational burden, ultimately contributing substantially to adrenocortical carcinoma's poor prognosis. Download at www.damage-net.co.uk.
Collapse
Affiliation(s)
- Aldo S Bader
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
18
|
Paull TT. Reconsidering pathway choice: a sequential model of mammalian DNA double-strand break pathway decisions. Curr Opin Genet Dev 2021; 71:55-62. [PMID: 34293662 DOI: 10.1016/j.gde.2021.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022]
Abstract
DNA double-strand breaks can be repaired through ligation-based pathways (non-homologous end-joining) or replication-based pathways (homologous recombination) in eukaryotic cells. The decisions that govern these outcomes are widely viewed as a competition between factors that recognize DNA ends and physically promote association of factors specific to each pathway, commonly known as 'pathway choice'. Here I review recent results in the literature and propose that this decision is better described as a sequential set of binding and end processing events, with non-homologous end joining as the first decision point. Physical association and co-localization of end resection factors with non-homologous end-joining factors suggests that ends are transferred between these complexes, thus the ultimate outcome is not the result of a competition but is more akin to a relay race that is determined by the efficiency of the initial end-joining event and the availability of activated DNA end-processing enzymes.
Collapse
Affiliation(s)
- Tanya T Paull
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, 78712, United States.
| |
Collapse
|
19
|
Levone BR, Lenzken SC, Antonaci M, Maiser A, Rapp A, Conte F, Reber S, Mechtersheimer J, Ronchi AE, Mühlemann O, Leonhardt H, Cardoso MC, Ruepp MD, Barabino SM. FUS-dependent liquid-liquid phase separation is important for DNA repair initiation. J Cell Biol 2021; 220:e202008030. [PMID: 33704371 PMCID: PMC7953258 DOI: 10.1083/jcb.202008030] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/17/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) are emerging as important effectors of the cellular DNA damage response (DDR). The RBP FUS is implicated in RNA metabolism and DNA repair, and it undergoes reversible liquid-liquid phase separation (LLPS) in vitro. Here, we demonstrate that FUS-dependent LLPS is necessary for the initiation of the DDR. Using laser microirradiation in FUS-knockout cells, we show that FUS is required for the recruitment to DNA damage sites of the DDR factors KU80, NBS1, and 53BP1 and of SFPQ, another RBP implicated in the DDR. The relocation of KU80, NBS1, and SFPQ is similarly impaired by LLPS inhibitors, or LLPS-deficient FUS variants. We also show that LLPS is necessary for efficient γH2AX foci formation. Finally, using superresolution structured illumination microscopy, we demonstrate that the absence of FUS impairs the proper arrangement of γH2AX nanofoci into higher-order clusters. These findings demonstrate the early requirement for FUS-dependent LLPS in the activation of the DDR and the proper assembly of DSB repair complexes.
Collapse
Affiliation(s)
- Brunno R. Levone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Silvia C. Lenzken
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Marco Antonaci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andreas Maiser
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Alexander Rapp
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Francesca Conte
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Stefan Reber
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Jonas Mechtersheimer
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Antonella E. Ronchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - M. Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Marc-David Ruepp
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Silvia M.L. Barabino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
20
|
Abbasi S, Parmar G, Kelly RD, Balasuriya N, Schild-Poulter C. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining. Cell Mol Life Sci 2021; 78:4589-4613. [PMID: 33855626 PMCID: PMC11071882 DOI: 10.1007/s00018-021-03801-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Since its discovery in 1981, the Ku complex has been extensively studied under multiple cellular contexts, with most work focusing on Ku in terms of its essential role in non-homologous end-joining (NHEJ). In this process, Ku is well-known as the DNA-binding subunit for DNA-PK, which is central to the NHEJ repair process. However, in addition to the extensive study of Ku's role in DNA repair, Ku has also been implicated in various other cellular processes including transcription, the DNA damage response, DNA replication, telomere maintenance, and has since been studied in multiple contexts, growing into a multidisciplinary point of research across various fields. Some advances have been driven by clarification of Ku's structure, including the original Ku crystal structure and the more recent Ku-DNA-PKcs crystallography, cryogenic electron microscopy (cryoEM) studies, and the identification of various post-translational modifications. Here, we focus on the advances made in understanding the Ku heterodimer outside of non-homologous end-joining, and across a variety of model organisms. We explore unique structural and functional aspects, detail Ku expression, conservation, and essentiality in different species, discuss the evidence for its involvement in a diverse range of cellular functions, highlight Ku protein interactions and recent work concerning Ku-binding motifs, and finally, we summarize the clinical Ku-related research to date.
Collapse
Affiliation(s)
- Sanna Abbasi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gursimran Parmar
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Rachel D Kelly
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Nileeka Balasuriya
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
21
|
Abbasi S, Schild-Poulter C. Identification of Ku70 Domain-Specific Interactors Using BioID2. Cells 2021; 10:cells10030646. [PMID: 33799447 PMCID: PMC8001828 DOI: 10.3390/cells10030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Since its inception, proximity-dependent biotin identification (BioID), an in vivo biochemical screening method to identify proximal protein interactors, has seen extensive developments. Improvements and variants of the original BioID technique are being reported regularly, each expanding upon the existing potential of the original technique. While this is advancing our capabilities to study protein interactions under different contexts, we have yet to explore the full potential of the existing BioID variants already at our disposal. Here, we used BioID2 in an innovative manner to identify and map domain-specific protein interactions for the human Ku70 protein. Four HEK293 cell lines were created, each stably expressing various BioID2-tagged Ku70 segments designed to collectively identify factors that interact with different regions of Ku70. Historically, although many interactions have been mapped to the C-terminus of the Ku70 protein, few have been mapped to the N-terminal von Willebrand A-like domain, a canonical protein-binding domain ideally situated as a site for protein interaction. Using this segmented approach, we were able to identify domain-specific interactors as well as evaluate advantages and drawbacks of the BioID2 technique. Our study identifies several potential new Ku70 interactors and validates RNF113A and Spindly as proteins that contact or co-localize with Ku in a Ku70 vWA domain-specific manner.
Collapse
|
22
|
Chen Z, Chen J. Mass spectrometry-based protein‒protein interaction techniques and their applications in studies of DNA damage repair. J Zhejiang Univ Sci B 2021; 22:1-20. [PMID: 33448183 PMCID: PMC7818012 DOI: 10.1631/jzus.b2000356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Proteins are major functional units that are tightly connected to form complex and dynamic networks. These networks enable cells and organisms to operate properly and respond efficiently to environmental cues. Over the past decades, many biochemical methods have been developed to search for protein-binding partners in order to understand how protein networks are constructed and connected. At the same time, rapid development in proteomics and mass spectrometry (MS) techniques makes it possible to identify interacting proteins and build comprehensive protein‒protein interaction networks. The resulting interactomes and networks have proven informative in the investigation of biological functions, such as in the field of DNA damage repair. In recent years, a number of proteins involved in DNA damage response and DNA repair pathways have been uncovered with MS-based protein‒protein interaction studies. As the technologies for enriching associated proteins and MS become more sophisticated, the studies of protein‒protein interactions are entering a new era. In this review, we summarize the strategies and recent developments for exploring protein‒protein interaction. In addition, we discuss the application of these tools in the investigation of protein‒protein interaction networks involved in DNA damage response and DNA repair.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Guedouari H, Ould Amer Y, Pichaud N, Hebert-Chatelain E. Characterization of the interactome of c-Src within the mitochondrial matrix by proximity-dependent biotin identification. Mitochondrion 2021; 57:257-269. [PMID: 33412331 DOI: 10.1016/j.mito.2020.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/09/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022]
Abstract
C-Src kinase is localized in several subcellular compartments, including mitochondria where it is involved in the regulation of organelle functions and overall metabolism. Surprisingly, the characterization of the intramitochondrial Src interactome has never been fully determined. Using in vitro proximity-dependent biotin identification (BioID) coupled to mass spectrometry, we identified 51 candidate proteins that may interact directly or indirectly with c-Src within the mitochondrial matrix. Pathway analysis suggests that these proteins are involved in a large array of mitochondrial functions such as protein folding and import, mitochondrial organization and transport, oxidative phosphorylation, tricarboxylic acid cycle and metabolism of amino and fatty acids. Among these proteins, we identified 24 tyrosine phosphorylation sites in 17 mitochondrial proteins (AKAP1, VDAC1, VDAC2, VDAC3, LonP1, Hsp90, SLP2, PHB2, MIC60, UBA1, EF-Tu, LRPPRC, ACO2, OAT, ACAT1, ETFβ and ATP5β) as potential substrates for intramitochondrial Src using in silico prediction of tyrosine phospho-sites. Interaction of c-Src with SLP2 and ATP5β was confirmed using coimmunoprecipitation. This study suggests that the intramitochondrial Src could target several proteins and regulate different mitochondrial functions.
Collapse
Affiliation(s)
- Hala Guedouari
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada; University of Moncton, Dept. of Biology, Moncton, NB, Canada
| | - Yasmine Ould Amer
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada; University of Moncton, Dept. of Biology, Moncton, NB, Canada
| | - Nicolas Pichaud
- University of Moncton, Dept. of Chemistry and Biochemistry, Moncton, NB, Canada
| | - Etienne Hebert-Chatelain
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada; University of Moncton, Dept. of Biology, Moncton, NB, Canada.
| |
Collapse
|
24
|
Brunet M, Vargas C, Larrieu D, Torrisani J, Dufresne M. E3 Ubiquitin Ligase TRIP12: Regulation, Structure, and Physiopathological Functions. Int J Mol Sci 2020; 21:ijms21228515. [PMID: 33198194 PMCID: PMC7697007 DOI: 10.3390/ijms21228515] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
The Thyroid hormone Receptor Interacting Protein 12 (TRIP12) protein belongs to the 28-member Homologous to the E6-AP C-Terminus (HECT) E3 ubiquitin ligase family. First described as an interactor of the thyroid hormone receptor, TRIP12’s biological importance was revealed by the embryonic lethality of a murine model bearing an inactivating mutation in the TRIP12 gene. Further studies showed the participation of TRIP12 in the regulation of major biological processes such as cell cycle progression, DNA damage repair, chromatin remodeling, and cell differentiation by an ubiquitination-mediated degradation of key protein substrates. Moreover, alterations of TRIP12 expression have been reported in cancers that can serve as predictive markers of therapeutic response. The TRIP12 gene is also referenced as a causative gene associated to intellectual disorders such as Clark–Baraitser syndrome and is clearly implicated in Autism Spectrum Disorder. The aim of the review is to provide an exhaustive and integrated overview of the different aspects of TRIP12 ranging from its regulation, molecular functions and physio-pathological implications.
Collapse
Affiliation(s)
- Manon Brunet
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
| | - Claire Vargas
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
| | - Dorian Larrieu
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
| | - Jérôme Torrisani
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
- Correspondence: (J.T.); (M.D.); Tel.: +33-582-741-644 (J.T.); +33-582-741-643 (M.D.)
| | - Marlène Dufresne
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
- Correspondence: (J.T.); (M.D.); Tel.: +33-582-741-644 (J.T.); +33-582-741-643 (M.D.)
| |
Collapse
|
25
|
Britton S, Chanut P, Delteil C, Barboule N, Frit P, Calsou P. ATM antagonizes NHEJ proteins assembly and DNA-ends synapsis at single-ended DNA double strand breaks. Nucleic Acids Res 2020; 48:9710-9723. [PMID: 32890395 PMCID: PMC7515714 DOI: 10.1093/nar/gkaa723] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Two DNA repair pathways operate at DNA double strand breaks (DSBs): non-homologous end-joining (NHEJ), that requires two adjacent DNA ends for ligation, and homologous recombination (HR), that resects one DNA strand for invasion of a homologous duplex. Faithful repair of replicative single-ended DSBs (seDSBs) is mediated by HR, due to the lack of a second DNA end for end-joining. ATM stimulates resection at such breaks through multiple mechanisms including CtIP phosphorylation, which also promotes removal of the DNA-ends sensor and NHEJ protein Ku. Here, using a new method for imaging the recruitment of the Ku partner DNA-PKcs at DSBs, we uncover an unanticipated role of ATM in removing DNA-PKcs from seDSBs in human cells. Phosphorylation of DNA-PKcs on the ABCDE cluster is necessary not only for DNA-PKcs clearance but also for the subsequent MRE11/CtIP-dependent release of Ku from these breaks. We propose that at seDSBs, ATM activity is necessary for the release of both Ku and DNA-PKcs components of the NHEJ apparatus, and thereby prevents subsequent aberrant interactions between seDSBs accompanied by DNA-PKcs autophosphorylation and detrimental commitment to Lig4-dependent end-joining.
Collapse
Affiliation(s)
- Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Pauline Chanut
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Christine Delteil
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Nadia Barboule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Philippe Frit
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| |
Collapse
|
26
|
Combined proximity labeling and affinity purification-mass spectrometry workflow for mapping and visualizing protein interaction networks. Nat Protoc 2020; 15:3182-3211. [PMID: 32778839 DOI: 10.1038/s41596-020-0365-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Affinity purification coupled with mass spectrometry (AP-MS) and proximity-dependent biotinylation identification (BioID) methods have made substantial contributions to interaction proteomics studies. Whereas AP-MS results in the identification of proteins that are in a stable complex, BioID labels and identifies proteins that are in close proximity to the bait, resulting in overlapping yet distinct protein identifications. Integration of AP-MS and BioID data has been shown to comprehensively characterize a protein's molecular context, but interactome analysis using both methods in parallel is still labor and resource intense with respect to cell line generation and protein purification. Therefore, we developed the Multiple Approaches Combined (MAC)-tag workflow, which allows for both AP-MS and BioID analysis with a single construct and with almost identical protein purification and mass spectrometry (MS) identification procedures. We have applied the MAC-tag workflow to a selection of subcellular markers to provide a global view of the cellular protein interactome landscape. This localization database is accessible via our online platform ( http://proteomics.fi ) to predict the cellular localization of a protein of interest (POI) depending on its identified interactors. In this protocol, we present the detailed three-stage procedure for the MAC-tag workflow: (1) cell line generation for the MAC-tagged POI; (2) parallel AP-MS and BioID protein purification followed by MS analysis; and (3) protein interaction data analysis, data filtration and visualization with our localization visualization platform. The entire procedure can be completed within 25 d.
Collapse
|
27
|
Ummethum H, Hamperl S. Proximity Labeling Techniques to Study Chromatin. Front Genet 2020; 11:450. [PMID: 32477404 PMCID: PMC7235407 DOI: 10.3389/fgene.2020.00450] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Mammals contain over 200 different cell types, yet nearly all have the same genomic DNA sequence. It is a key question in biology how the genetic instructions in DNA are selectively interpreted by cells to specify various transcriptional programs and therefore cellular identity. The structural and functional organization of chromatin governs the transcriptional state of individual genes. To understand how genomic loci adopt different levels of gene expression, it is critical to characterize all local chromatin factors as well as long-range interactions in the 3D nuclear compartment. Much of our current knowledge regarding protein interactions in a chromatin context is based on affinity purification of chromatin components coupled to mass spectrometry (AP-MS). AP-MS has been invaluable to map strong protein-protein interactions in the nucleus. However, the interaction is detected after cell lysis and biochemical enrichment, allowing for loss or gain of false positive or negative interaction partners. Recently, proximity-dependent labeling methods have emerged as powerful tools for studying chromatin in its native context. These methods take advantage of engineered enzymes that are fused to a chromatin factor of interest and can directly label all factors in proximity. Subsequent pull-down assays followed by mass spectrometry or sequencing approaches provide a comprehensive snapshot of the proximal chromatin interactome. By combining this method with dCas9, this approach can also be extended to study chromatin at specific genomic loci. Here, we review and compare current proximity-labeling approaches available for studying chromatin, with a particular focus on new emerging technologies that can provide important insights into the transcriptional and chromatin interaction networks essential for cellular identity.
Collapse
Affiliation(s)
- Henning Ummethum
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
28
|
Architecture of The Human Ape1 Interactome Defines Novel Cancers Signatures. Sci Rep 2020; 10:28. [PMID: 31913336 PMCID: PMC6949240 DOI: 10.1038/s41598-019-56981-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
APE1 is essential in cancer cells due to its central role in the Base Excision Repair pathway of DNA lesions and in the transcriptional regulation of genes involved in tumor progression/chemoresistance. Indeed, APE1 overexpression correlates with chemoresistance in more aggressive cancers, and APE1 protein-protein interactions (PPIs) specifically modulate different protein functions in cancer cells. Although important, a detailed investigation on the nature and function of protein interactors regulating APE1 role in tumor progression and chemoresistance is still lacking. The present work was aimed at analyzing the APE1-PPI network with the goal of defining bad prognosis signatures through systematic bioinformatics analysis. By using a well-characterized HeLa cell model stably expressing a flagged APE1 form, which was subjected to extensive proteomics analyses for immunocaptured complexes from different subcellular compartments, we here demonstrate that APE1 is a central hub connecting different subnetworks largely composed of proteins belonging to cancer-associated communities and/or involved in RNA- and DNA-metabolism. When we performed survival analysis in real cancer datasets, we observed that more than 80% of these APE1-PPI network elements is associated with bad prognosis. Our findings, which are hypothesis generating, strongly support the possibility to infer APE1-interactomic signatures associated with bad prognosis of different cancers; they will be of general interest for the future definition of novel predictive disease biomarkers. Future studies will be needed to assess the function of APE1 in the protein complexes we discovered. Data are available via ProteomeXchange with identifier PXD013368.
Collapse
|