1
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 PMCID: PMC11996003 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M. Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | | |
Collapse
|
2
|
Klein D, Rivera ES, Caprioli RM, Spraggins JM. Imaging Mass Spectrometry of Isotopically Resolved Intact Proteins on a Trapped Ion-Mobility Quadrupole Time-of-Flight Mass Spectrometer. Anal Chem 2024; 96:5065-5070. [PMID: 38517028 PMCID: PMC10993197 DOI: 10.1021/acs.analchem.3c05252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
In this work, we demonstrate rapid, high spatial, and high spectral resolution imaging of intact proteins by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) on a hybrid quadrupole-reflectron time-of-flight (qTOF) mass spectrometer equipped with trapped ion mobility spectrometry (TIMS). Historically, untargeted MALDI IMS of proteins has been performed on TOF mass spectrometers. While advances in TOF instrumentation have enabled rapid, high spatial resolution IMS of intact proteins, TOF mass spectrometers generate relatively low-resolution mass spectra with limited mass accuracy. Conversely, the implementation of MALDI sources on high-resolving power Fourier transform (FT) mass spectrometers has allowed IMS experiments to be conducted with high spectral resolution with the caveat of increasingly long data acquisition times. As illustrated here, qTOF mass spectrometers enable protein imaging with the combined advantages of TOF and FT mass spectrometers. Protein isotope distributions were resolved for both a protein standard mixture and proteins detected from a whole-body mouse pup tissue section. Rapid (∼10 pixels/s) 10 μm lateral spatial resolution IMS was performed on a rat brain tissue section while maintaining isotopic spectral resolution. Lastly, proof-of-concept MALDI-TIMS data was acquired from a protein mixture to demonstrate the ability to differentiate charge states by ion mobility. These experiments highlight the advantages of qTOF and timsTOF platforms for resolving and interpreting complex protein spectra generated from tissue by IMS.
Collapse
Affiliation(s)
- Dustin
R. Klein
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Emilio S. Rivera
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Richard M. Caprioli
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Medicine, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey M. Spraggins
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| |
Collapse
|
3
|
Zemaitis KJ, Zhou M, Kew W, Paša-Tolić L. 193 nm Ultraviolet Photodissociation for the Characterization of Singly Charged Proteoforms Generated by MALDI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:328-332. [PMID: 36622763 PMCID: PMC10084724 DOI: 10.1021/jasms.2c00302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
MALDI imaging allows for the near-cellular profiling of proteoforms directly from microbial, plant, and mammalian samples. Despite detecting hundreds of proteoforms, identification of unknowns with only intact mass information remains a distinct challenge, even with high mass resolving power and mass accuracy. To this end, many supplementary methods have been used to create experimental databases for accurate mass matching, including bulk or spatially resolved bottom-up and/or top-down proteomics. Herein, we describe the application of 193 nm ultraviolet photodissociation (UVPD) for fragmentation of quadrupole isolated singly charged ubiquitin (m/z 8565) by MALDI-UVPD on a UHMR HF Orbitrap. This platform permitted the high-resolution accurate mass measurement of not just terminal fragments but also large internal fragments. The outlined workflow demonstrates the feasibility of top-down analyses of isolated MALDI protein ions and the potential toward more comprehensive characterization of proteoforms in MALDI imaging applications.
Collapse
Affiliation(s)
- Kevin J Zemaitis
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - William Kew
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
4
|
Zemaitis KJ, Veličković D, Kew W, Fort KL, Reinhardt-Szyba M, Pamreddy A, Ding Y, Kaushik D, Sharma K, Makarov AA, Zhou M, Paša-Tolić L. Enhanced Spatial Mapping of Histone Proteoforms in Human Kidney Through MALDI-MSI by High-Field UHMR-Orbitrap Detection. Anal Chem 2022; 94:12604-12613. [PMID: 36067026 PMCID: PMC10064997 DOI: 10.1021/acs.analchem.2c01034] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Core histones including H2A, H2B, H3, and H4 are key modulators of cellular repair, transcription, and replication within eukaryotic cells, playing vital roles in the pathogenesis of disease and cellular responses to environmental stimuli. Traditional mass spectrometry (MS)-based bottom-up and top-down proteomics allows for the comprehensive identification of proteins and of post-translational modification (PTM) harboring proteoforms. However, these methodologies have difficulties preserving near-cellular spatial distributions because they typically require laser capture microdissection (LCM) and advanced sample preparation techniques. Herein, we coupled a matrix-assisted laser desorption/ionization (MALDI) source with a Thermo Scientific Q Exactive HF Orbitrap MS upgraded with ultrahigh mass range (UHMR) boards for the first demonstration of complementary high-resolution accurate mass (HR/AM) measurements of proteoforms up to 16.5 kDa directly from tissues using this benchtop mass spectrometer. The platform achieved isotopic resolution throughout the detected mass range, providing confident assignments of proteoforms with low ppm mass error and a considerable increase in duty cycle over other Fourier transform mass analyzers. Proteoform mapping of core histones was demonstrated on sections of human kidney at near-cellular spatial resolution, with several key distributions of histone and other proteoforms noted within both healthy biopsy and a section from a renal cell carcinoma (RCC) containing nephrectomy. The use of MALDI-MS imaging (MSI) for proteoform mapping demonstrates several steps toward high-throughput accurate identification of proteoforms and provides a new tool for mapping biomolecule distributions throughout tissue sections in extended mass ranges.
Collapse
Affiliation(s)
- Kevin J Zemaitis
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - William Kew
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kyle L Fort
- Thermo Fisher Scientific (Bremen) GmbH, 28199 Bremen, Germany
| | | | - Annapurna Pamreddy
- Center for Renal Precision Medicine, Department of Medicine, University of Texas Health, San Antonio, Texas 78284, United States
| | - Yanli Ding
- Department of Pathology and Laboratory Medicine, University of Texas Health, San Antonio, Texas 78284, United States
| | - Dharam Kaushik
- Department of Urology, University of Texas Health, San Antonio, Texas 78284, United States
| | - Kumar Sharma
- Center for Renal Precision Medicine, Department of Medicine, University of Texas Health, San Antonio, Texas 78284, United States.,Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78284, United States
| | - Alexander A Makarov
- Thermo Fisher Scientific (Bremen) GmbH, 28199 Bremen, Germany.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht 3584, The Netherlands
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
5
|
Dorfer V, Strobl M, Winkler S, Mechtler K. MS Amanda 2.0: Advancements in the standalone implementation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9088. [PMID: 33759252 PMCID: PMC8244010 DOI: 10.1002/rcm.9088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/27/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Database search engines are the preferred method to identify peptides in mass spectrometry data. However, valuable software is in this context not only defined by a powerful algorithm to separate correct from false identifications, but also by constant maintenance and continuous improvements. METHODS In 2014, we presented our peptide identification algorithm MS Amanda, showing its suitability for identifying peptides in high-resolution tandem mass spectrometry data and its ability to outperform widely used tools to identify peptides. Since then, we have continuously worked on improvements to enhance its usability and to support new trends and developments in this fast-growing field, while keeping the original scoring algorithm to assess the quality of a peptide spectrum match unchanged. RESULTS We present the outcome of these efforts, MS Amanda 2.0, a faster and more flexible standalone version with the original scoring algorithm. The new implementation has led to a 3-5× speedup, is able to handle new ion types and supports standard data formats. We also show that MS Amanda 2.0 works best when using only the most common ion types in a particular search instead of all possible ion types. CONCLUSIONS MS Amanda is available free of charge from https://ms.imp.ac.at/index.php?action=msamanda.
Collapse
Affiliation(s)
- Viktoria Dorfer
- Bioinformatics Research GroupUniversity of Applied Sciences Upper AustriaSoftwarepark 11, 4232 HagenbergAustria
| | - Marina Strobl
- Bioinformatics Research GroupUniversity of Applied Sciences Upper AustriaSoftwarepark 11, 4232 HagenbergAustria
| | - Stephan Winkler
- Bioinformatics Research GroupUniversity of Applied Sciences Upper AustriaSoftwarepark 11, 4232 HagenbergAustria
| | - Karl Mechtler
- Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)Campus‐Vienna‐Biocenter 1Vienna1030Austria
- Institute of Molecular Biotechnology (IMBA)Austrian Academy of Sciences, Vienna BioCenter (VBC)Dr. Bohr‐Gasse 3Vienna1030Austria
- Gregor Mendel Institute (GMI)Austrian Academy of Sciences, Vienna BioCenter (VBC)Dr. Bohr‐ Gasse 3Vienna1030Austria
| |
Collapse
|
6
|
Brodbelt JS, Morrison LJ, Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem Rev 2020; 120:3328-3380. [PMID: 31851501 PMCID: PMC7145764 DOI: 10.1021/acs.chemrev.9b00440] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of new ion-activation/dissociation methods continues to be one of the most active areas of mass spectrometry owing to the broad applications of tandem mass spectrometry in the identification and structural characterization of molecules. This Review will showcase the impact of ultraviolet photodissociation (UVPD) as a frontier strategy for generating informative fragmentation patterns of ions, especially for biological molecules whose complicated structures, subtle modifications, and large sizes often impede molecular characterization. UVPD energizes ions via absorption of high-energy photons, which allows access to new dissociation pathways relative to more conventional ion-activation methods. Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.
Collapse
Affiliation(s)
- Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lindsay J. Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Inês Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Nicolardi S, Kilgour DPA, Dolezal N, Drijfhout JW, Wuhrer M, van der Burgt YEM. Evaluation of Sibling and Twin Fragment Ions Improves the Structural Characterization of Proteins by Top-Down MALDI In-Source Decay Mass Spectrometry. Anal Chem 2020; 92:5871-5881. [PMID: 32212639 PMCID: PMC7178258 DOI: 10.1021/acs.analchem.9b05683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Comprehensive determination
of primary sequence and identification
of post-translational modifications (PTMs) are key elements in protein
structural analysis. Various mass spectrometry (MS) based fragmentation
techniques are powerful approaches for mapping both the amino acid
sequence and PTMs; one of these techniques is matrix-assisted laser
desorption/ionization (MALDI), combined with in-source decay (ISD)
fragmentation and Fourier-transform ion cyclotron resonance (FT-ICR)
MS. MALDI-ISD MS protein analysis involves only minimal sample preparation
and does not require spectral deconvolution. The resulting MALDI-ISD
MS data is complementary to electrospray ionization-based MS/MS sequencing
readouts, providing knowledge on the types of fragment ions is available.
In this study, we evaluate the isotopic distributions of z′ ions in protein top-down MALDI-ISD FT-ICR mass spectra and
show why these distributions can deviate from theoretical profiles
as a result of co-occurring and isomeric z and y-NH3 ions. Two synthetic peptides, containing
either normal or deuterated alanine residues, were used to confirm
the presence and unravel the identity of isomeric z and y-NH3 fragment ions (“twins”).
Furthermore, two reducing MALDI matrices, namely 1,5-diaminonaphthalene
and N-phenyl-p-phenylenediamine
were applied that yield ISD mass spectra with different fragment ion
distributions. This study demonstrates that the relative abundance
of isomeric z and y-NH3 ions requires consideration for accurate and confident assignments
of z′ ions in MALDI-ISD FT-ICR mass spectra.
Collapse
Affiliation(s)
- Simone Nicolardi
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| | - David P A Kilgour
- Department of Chemistry, Nottingham Trent University, Nottingham NG11 0JN, United Kingdom
| | - Natasja Dolezal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| | - Yuri E M van der Burgt
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| |
Collapse
|
8
|
Fornelli L, Srzentić K, Toby TK, Doubleday PF, Huguet R, Mullen C, Melani RD, Dos Santos Seckler H, DeHart CJ, Weisbrod CR, Durbin KR, Greer JB, Early BP, Fellers RT, Zabrouskov V, Thomas PM, Compton PD, Kelleher NL. Thorough Performance Evaluation of 213 nm Ultraviolet Photodissociation for Top-down Proteomics. Mol Cell Proteomics 2020; 19:405-420. [PMID: 31888965 PMCID: PMC7000117 DOI: 10.1074/mcp.tir119.001638] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/29/2019] [Indexed: 11/06/2022] Open
Abstract
Top-down proteomics studies intact proteoform mixtures and offers important advantages over more common bottom-up proteomics technologies, as it avoids the protein inference problem. However, achieving complete molecular characterization of investigated proteoforms using existing technologies remains a fundamental challenge for top-down proteomics. Here, we benchmark the performance of ultraviolet photodissociation (UVPD) using 213 nm photons generated by a solid-state laser applied to the study of intact proteoforms from three organisms. Notably, the described UVPD setup applies multiple laser pulses to induce ion dissociation, and this feature can be used to optimize the fragmentation outcome based on the molecular weight of the analyzed biomolecule. When applied to complex proteoform mixtures in high-throughput top-down proteomics, 213 nm UVPD demonstrated a high degree of complementarity with the most employed fragmentation method in proteomics studies, higher-energy collisional dissociation (HCD). UVPD at 213 nm offered higher average proteoform sequence coverage and degree of proteoform characterization (including localization of post-translational modifications) than HCD. However, previous studies have shown limitations in applying database search strategies developed for HCD fragmentation to UVPD spectra which contains up to nine fragment ion types. We therefore performed an analysis of the different UVPD product ion type frequencies. From these data, we developed an ad hoc fragment matching strategy and determined the influence of each possible ion type on search outcomes. By paring down the number of ion types considered in high-throughput UVPD searches from all types down to the four most abundant, we were ultimately able to achieve deeper proteome characterization with UVPD. Lastly, our detailed product ion analysis also revealed UVPD cleavage propensities and determined the presence of a product ion produced specifically by 213 nm photons. All together, these observations could be used to better elucidate UVPD dissociation mechanisms and improve the utility of the technique for proteomic applications.
Collapse
Affiliation(s)
- Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Kristina Srzentić
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Timothy K Toby
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Peter F Doubleday
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Romain Huguet
- Thermo Fisher Scientific, San Jose, California 95134
| | | | - Rafael D Melani
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Henrique Dos Santos Seckler
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Caroline J DeHart
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | | | - Kenneth R Durbin
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208; Proteinaceous Inc., Evanston, Illinois 60201
| | - Joseph B Greer
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Bryan P Early
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Ryan T Fellers
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | | | - Paul M Thomas
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208.
| |
Collapse
|
9
|
Hale O, Morris M, Jones B, Reynolds CK, Cramer R. Liquid Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Adds Enhanced Functionalities to MALDI MS Profiling for Disease Diagnostics. ACS OMEGA 2019; 4:12759-12765. [PMID: 31460399 PMCID: PMC6681994 DOI: 10.1021/acsomega.9b01476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 05/08/2023]
Abstract
A liquid matrix-assisted laser desorption/ionization (liquid MALDI) method has been developed for high-throughput atmospheric pressure (AP) mass spectrometry (MS) analysis of the molecular content of crude bioliquids for disease diagnostics. The presented method is rapid and highly robust, enabling its application in environments where speed and low-cost high-throughput analyses are required. Importantly, because of the creation of multiply charged analyte ions, it provides additional functionalities that conventional solid MALDI MS profiling is lacking, including the use of high-performance mass analyzers with limited m/z range. The concomitant superior MS/MS performance that is achieved similar to ESI MS/MS adds greater analytical power and specificity to MALDI MS profiling while retaining the advantages of a fast laser-based analysis system and off-line large-scale sample preparation. The potential of this MALDI MS profiling method is demonstrated on the detection of dairy cow mastitis, which is a substantial economic burden on the dairy industry with losses of hundreds of dollars per diseased cow per year, equating to a total annual loss of billions of dollars, as well as leading to the use of large quantities of antibiotics, adding to the proliferation of antimicrobial resistance. Only small amounts of aliquots obtained from the daily farm milking process were prepared for liquid MALDI MS profiling using a simple one-pot/two-step analyte extraction. Automated analysis was performed using a custom-built AP-MALDI ion source, enabling the simultaneous detection of lipids, peptides, and proteins. Diagnostic, multiply charged, proteinaceous ions were easily sequenced and identified by MS/MS experiments. Samples were classified according to mastitis status using multivariate analysis, achieving 98.5% accuracy (100% specificity) determined by "leave 20% out" cross-validation. The methodology is generally applicable to AP-MALDI MS profiling on most commercial high-resolution mass spectrometers, with the potential for expansion into hospitals for rapid assessment of human and other biofluids.
Collapse
Affiliation(s)
- Oliver
J. Hale
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Michael Morris
- Waters
Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K.
| | - Barney Jones
- The
Centre for Dairy Research, School of Agriculture, Policy and Development, University of Reading, Reading RG2 9HX, U.K.
| | - Christopher K. Reynolds
- The
Centre for Dairy Research, School of Agriculture, Policy and Development, University of Reading, Reading RG2 9HX, U.K.
| | - Rainer Cramer
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
- E-mail:
| |
Collapse
|