1
|
Eskandari A, Safavi SN, Sahrayi H, Alizadegan D, Eskandarisani M, Javanmard A, Tajik M, Sadeghi Z, Toutounch A, Yeganeh FE, Noorbazargan H. Antimicrobial and antibiofilm activity of prepared thymol@UIO-66 and thymol/ZnONPs@UIO-66 nanoparticles against Methicillin-resistant Staphylococcus aureus: A synergistic approach. Colloids Surf B Biointerfaces 2025; 249:114529. [PMID: 39879671 DOI: 10.1016/j.colsurfb.2025.114529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
This study introduces a novel approach to enhance the antibacterial properties of UIO-66 by incorporating both Thymol and ZnO nanoparticles within its framework which represents a significant advancement like exhibiting a synergistic antibacterial effect, providing a prolonged and controlled release, and mitigating cytotoxicity associated with the release of free ZnO nanoparticles by combining these two antimicrobial agents within a single, well-defined metal-organic framework. UIO-66 frameworks are investigated as carriers for the natural antimicrobial agent, Thymol, and ZnONPs offering a novel drug delivery system for antibacterial applications. Results demonstrated 132, 90, 184, and 223 nm sizes for UIO-66, ZnONPs, UIO-66 encapsulated Thymol, and UIO-66 encapsulated both Thymol and ZnONPs, respectively. Successful encapsulation of the antibacterial drug with a high entrapment efficiency of 64 % for Thymol was approved, and 49 % in-vitro release of Thymol was achieved for 72 hours. In-vitro antibacterial assays revealed promising results, with the drug-loaded nanoparticles exhibiting significantly lower MIC values and enhanced bactericidal activity against S. Aureus bacterial strains compared to the free drug, as demonstrated by agar disk diffusion and time-kill assays. MIC values reduced from a range of 31.25-250 µg/ml for free Thymol and 12.5-100 µg/ml for free ZnONPs to 3.9-62.5 µg/ml for Thymol@UIO-66 and 1.95-15.63 µg/ml for Thymol/ZnONPs@UIO-66. According to the results, the mixture of both Thymol and ZnONPs had 41 % and 16 % more antibiofilm activities in comparison with free Thymol and free ZnONPs, respectively. Furthermore, Thymol@UIO-66 had 25 % higher antibiofilm activities relative to not-encapsulated Thymol and ZnONPs, and this improvement was even 46 % more in Thymol/ZnONPs@UIO-66 in comparison with Thymol@UIO-66. Overall, this study demonstrates the potential of Thymol/ZnONPs@UIO-66 frameworks as a promising drug delivery platform for effective antibacterial therapy. This approach to overcome antibiotic resistance and improve treatment efficacy potentially.
Collapse
Affiliation(s)
- Alireza Eskandari
- CTERC, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Nooshin Safavi
- Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, Qom, Iran
| | - Hamidreza Sahrayi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Dorsa Alizadegan
- Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | | | - Alireza Javanmard
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-1503, United States
| | - Mohammadreza Tajik
- Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15219, United States
| | - Zohre Sadeghi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Disease, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Arvin Toutounch
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Rahmanian N, Moulavi P, Ashrafi F, Sharifi A, Asadi S. Surface-functionalized UIO-66-NH 2 for dual-drug delivery of vancomycin and amikacin against vancomycin-resistant Staphylococcus aureus. BMC Microbiol 2024; 24:462. [PMID: 39516717 PMCID: PMC11546402 DOI: 10.1186/s12866-024-03615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Conventional antibacterial compounds can inhibit the growth of microorganisms, but their adverse effects and the development of drug limit their widespread use. The current study aimed to synthesize PEG-coated UIO-66-NH2 nanoparticles loaded with vancomycin and amikacin (VAN/AMK-UIO-66-NH2@PEG) and evaluate their antibacterial and anti-biofilm activities against vancomycin-resistant Staphylococcus aureus (VRSA) clinical isolates. METHODS The VAN/AMK-UIO-66-NH2@PEG were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS) to determine their size, polydispersity index (PDI), encapsulation efficiency (EE%), zeta-potential, drug release profile, and physical stability. Antibacterial activity was evaluated using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-kill assays. Biofilm formation by VRSA was assessed using the crystal violet (CV) and minimum biofilm eradication concentration (MBEC) assays. The effect of sub-MIC concentrations of the formulations on the expression of biofilm-related genes (icaA, icaD) and resistance-related genes (mecA, vanA) was investigated using quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS As demonstrated by MIC, MBC and time-kill assay, the VAN/AMK-UIO-66-NH2@PEG nanoparticles exhibited enhanced antibacterial activity against VRSA isolates compared to free drugs and prepared formulations. Furthermore, CV and MBEC tests indicated that the VAN/AMK-UIO-66@NH2/PEG can reduce biofilm formation dramatically compared to VAN/AMK and VAN/AMK-UIO-66@NH2, due to its great drug release properties. This study also found that the expression level of the mecA, vanA, icaA, and icaD genes in VAN/AMK-UIO-66@NH2/PEG treated VRSA isolates was substantially decreased compared to other groups. CONCLUSIONS These findings highlighted the efficiency of VAN/AMK-UIO-66@NH2/PEG in combating antimicrobial resistance and biofilm formation in VRSA isolates. Future studies, particularly in vivo models, are necessary to evaluate the safety, efficacy, and clinical applicability of these nanoparticles for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Nazanin Rahmanian
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pooria Moulavi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ashrafi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Aram Sharifi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Sepideh Asadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
AbouAitah K, Geioushy RA, Nour SA, Emam MTH, Zakaria MA, Fouad OA, Shaker YM, Kim BS. A Combined Phyto- and Photodynamic Delivery Nanoplatform Enhances Antimicrobial Therapy: Design, Preparation, In Vitro Evaluation, and Molecular Docking. ACS APPLIED BIO MATERIALS 2024; 7:6873-6889. [PMID: 39374427 DOI: 10.1021/acsabm.4c00988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Microbial combating is one of the hot research topics, and finding an alternative strategy is considerably required nowadays. Here, we report on a developed combined chemo- and photodynamic delivery system with a core of zinc oxide nanoparticles (ZnO NPs), porphyrin photosensitizer (POR) connected to alginate polymer (ALG), and berberine (alkaloid natural agent, BER) with favorable antimicrobial effects. According to the achieved main designs, the results demonstrated that the loading capacity and entrapment efficiency reached 22.2 wt % and 95.2%, respectively, for ZnO@ALG-POR/BER nanoformulation (second design) compared to 5.88 wt % and 45.1% for ZnOBER@ALG-POR design (first design). Importantly, when the intended nanoformulations were combined with laser irradiation for 10 min, they showed effective antifungal and antibacterial action against Candida albicans, Escherichia coli, and Staphylococcus aureus. Comparing these treatments to ZnO NPs and free BER, a complete (100%) suppression of bacterial and fungal growth was observed by ZnO@ALG-POR/BER nanoformulation treated E. coli, and by ZnOBER treated C. albicans. Also, after laser treatments, most data showed that E. coli was more sensitive to treatments using nanoformulations than S. aureus. The nanoformulations like ZnOBER@ALG-POR were highly comparable to traditional antibiotics against C. albicans and E. coli before laser application. The results of the cytotoxicity assessment demonstrated that the nanoformulations exhibited moderate biocompatibility on normal human immortalized retinal epithelial (RPE1) cells. Notably, the most biocompatible nanoformulation was ZnOBER@ALG-POR, which possessed ∼9% inhibition of RPE1 cells compared to others. High binding affinities were found between all three microbial strains' receptor proteins and ligands in the molecular docking interaction between the receptor proteins and the ligand molecules (mostly BER and POR). In conclusion, our findings point to the possible use of hybrid nanoplatform delivery systems that combine natural agents and photodynamic therapy into a single therapeutic agent, effectively combating microbial infections. Therapeutic efficiency correlates with nanoformulation design and microorganisms, demonstrating possible optimization for further development.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Ramadan A Geioushy
- Nanostructured Materials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
| | - Shaimaa A Nour
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Maha T H Emam
- Department of Genetics and Cytology, Biotechnology Research Institute, National Research Centre, 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Mohammed A Zakaria
- Spectroscopy Department, Physics Research Institute, National Research Centre, 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Osama A Fouad
- Nanostructured Materials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
| | - Yasser M Shaker
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
4
|
Xie BX, Wang HS, Zheng HQ, Xu J, Chen L, Zhang FZ, Wang YL, Lin ZJ, Lin RG. Boosting Antibacterial Photodynamic Therapy in a Nanosized Zr MOF by the Combination of Ag NP Encapsulation and Porphyrin Doping. Inorg Chem 2023; 62:13892-13901. [PMID: 37587720 DOI: 10.1021/acs.inorgchem.3c01785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Antibacterial photodynamic therapy (aPDT) is regarded as one of the most promising antibacterial therapies due to its nonresistance, noninvasion, and rapid sterilization. However, the development of antibacterial materials with high aPDT efficacy is still a long-standing challenge. Herein, we develop an effective antibacterial photodynamic composite UiO-66-(SH)2@TCPP@AgNPs by Ag encapsulation and 4,4',4″,4‴-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) (TCPP) dopant. Through a mix-and-match strategy in the self-assembly process, 2,5-dimercaptoterephthalic acid containing -SH groups and TCPP were uniformly decorated into the UiO-66-type framework to form UiO-66-(SH)2@TCPP. After Ag(I) impregnation and in situ UV light reduction, Ag NPs were formed and encapsulated into UiO-66-(SH)2@TCPP to get UiO-66-(SH)2@TCPP@AgNPs. In the resulting composite, both Ag NPs and TCPP can effectively enhance the visible light absorption, largely boosting the generation efficiency of reactive oxygen species. Notably, the nanoscale size enables it to effectively contact and be endocytosed into bacteria. Consequently, UiO-66-(SH)2@TCPP@AgNPs show a very high aPDT efficacy against Gram-negative and Gram-positive bacteria as well as drug-resistant bacteria (MRSA). Furthermore, the Ag NPs were firmly anchored at the framework by the high density of -SH moieties, avoiding the cytotoxicity caused by the leakage of Ag NPs. By in vitro experiments, UiO-66-(SH)2@TCPP@AgNPs show a very high antibacterial activity and good biocompatibility as well as the potentiality to promote cell proliferation.
Collapse
Affiliation(s)
- Bao-Xuan Xie
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Hai-Shuang Wang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Hui-Qian Zheng
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Jin Xu
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Li Chen
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Fang-Zhong Zhang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Yu-Lin Wang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Zu-Jin Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Rong-Guang Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| |
Collapse
|
5
|
Li Y, Xia X, Hou W, Lv H, Liu J, Li X. How Effective are Metal Nanotherapeutic Platforms Against Bacterial Infections? A Comprehensive Review of Literature. Int J Nanomedicine 2023; 18:1109-1128. [PMID: 36883070 PMCID: PMC9985878 DOI: 10.2147/ijn.s397298] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/19/2023] [Indexed: 03/05/2023] Open
Abstract
The emergence of multidrug-resistant bacteria has been deemed a global crisis that affects humans worldwide. Novel anti-infection strategies are desperately needed because of the limitations of conventional antibiotics. However, the increasing gap between clinical demand and antimicrobial treatment innovation, as well as the membrane permeability obstacle especially in gram-negative bacteria fearfully restrict the reformation of antibacterial strategy. Metal-organic frameworks (MOFs) have the advantages of adjustable apertures, high drug-loading rates, tailorable structures, and superior biocompatibilities, enabling their utilization as drug delivery carriers in biotherapy applications. Additionally, the metal elements in MOFs are usually bactericidal. This article provides a review of the state-of-The-art design, the underlying antibacterial mechanisms and antibacterial applications of MOF- and MOF-based drug-loading materials. In addition, the existing problems and future perspectives of MOF- and MOF-based drug-loading materials are also discussed.
Collapse
Affiliation(s)
- Ying Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, People's Republic of China
| | - Xiaomin Xia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, People's Republic of China
| | - Wenxue Hou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, People's Republic of China
| | - Hanlin Lv
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, People's Republic of China
| | - Jie Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, People's Republic of China
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
6
|
Huang B, Zhang C, Tian J, Tian Q, Huang G, Zhang W. A Cascade BIME-Triggered Near-IR Cyanine Nanoplatform for Enhanced Antibacterial Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10520-10528. [PMID: 36794860 DOI: 10.1021/acsami.2c22937] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The long-standing misuse of antibiotics has accelerated the emergence of drug-resistant bacteria, which gives rise to an urgent public health threat. Antibacterial photodynamic therapy (aPDT), as a burgeoning and promising antibacterial strategy, plays an essential role in avoiding the evolution of drug-resistant microbes. However, it is hard for conventional photosensitizers to achieve satisfactory antibacterial efficacy because of the complex bacterial infectious microenvironment (BIME). Herein, a cascade BIME-triggered near-infrared cyanine (HA-CY) nanoplatform has been developed via conjugating cyanine units to biocompatible hyaluronic acid (HA) for enhanced aPDT efficacy. The HA-CY nanoparticles can be dissociated under the overexpressed hyaluronidase in BIME to release a cyanine photosensitizer. Meanwhile, cyanine can be protonated under acidic BIME, where protonated cyanine can efficiently adhere to the surface of a negatively charged bacterial membrane and increase singlet oxygen production due to intramolecular charge transfer (ICT). Experiments in the cellular level and animal model proved that the BIME-triggered activation of aPDT could remarkably boost aPDT efficacy. Overall, this BIME-triggered HA-CY nanoplatform presents great promise for overcoming the dilemma of drug-resistant microbes.
Collapse
Affiliation(s)
- Baoxuan Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chen Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
7
|
Geng Z, Cao Z, Liu J. Recent advances in targeted antibacterial therapy basing on nanomaterials. EXPLORATION (BEIJING, CHINA) 2023; 3:20210117. [PMID: 37323620 PMCID: PMC10191045 DOI: 10.1002/exp.20210117] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/19/2022] [Indexed: 06/17/2023]
Abstract
Bacterial infection has become one of the leading causes of death worldwide, particularly in low-income countries. Despite the fact that antibiotics have provided successful management in bacterial infections, the long-term overconsumption and abuse of antibiotics has contributed to the emergence of multidrug resistant bacteria. To address this challenge, nanomaterials with intrinsic antibacterial properties or that serve as drug carriers have been substantially developed as an alternative to fight against bacterial infection. Systematically and deeply understanding the antibacterial mechanisms of nanomaterials is extremely important for designing new therapeutics. Recently, nanomaterials-mediated targeted bacteria depletion in either a passive or active manner is one of the most promising approaches for antibacterial treatment by increasing local concentration around bacterial cells to enhance inhibitory activity and reduce side effects. Passive targeting approach is widely explored by searching nanomaterial-based alternatives to antibiotics, while active targeting strategy relies on biomimetic or biomolecular surface feature that can selectively recognize targeted bacteria. In this review article, we summarize the recent developments in the field of targeted antibacterial therapy based on nanomaterials, which will promote more innovative thinking focusing on the treatment of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- The Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
- Qingdao Cancer InstituteQingdao UniversityQingdaoChina
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
8
|
Zhou J, Guo M, Wu D, Shen M, Liu D, Ding T. Synthesis of UiO-66 loaded-caffeic acid and study of its antibacterial mechanism. Food Chem 2023; 402:134248. [DOI: 10.1016/j.foodchem.2022.134248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022]
|
9
|
Pourmadadi M, Eshaghi MM, Ostovar S, Shamsabadipour A, Safakhah S, Mousavi MS, Rahdar A, Pandey S. UiO-66 metal-organic framework nanoparticles as gifted MOFs to the biomedical application: A comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Gholami M, Darroudi M, Hekmat A, Khazaei M. Five-FU@CuS/NH 2 -UiO-66 as a drug delivery system for 5-fluorouracil to colorectal cancer cells. J Biochem Mol Toxicol 2022; 36:e23145. [PMID: 35702888 DOI: 10.1002/jbt.23145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/16/2022] [Accepted: 05/31/2022] [Indexed: 11/05/2022]
Abstract
In this study, copper sulfide nanoparticles (CuS-NPs), which can improve the antiproliferative properties of conventional anticancer drugs such as 5-fluorouracil (5-FU), were incorporated into the pores of amine-functionalized UiO-66 (CuS/NH2 -UiO-66). The introduced nano-drug delivery system was exerted to perform an in vitro treatment on CT-26 mouse colorectal cancer cells. The synthesized final product was labeled as 5-FU@CuS/NH2 -UiO-66 and characterized through conventional methods including X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) analysis, Ultraviolet-Visible (UV-Vis) analysis, Inductively coupled plasma mass spectrometry (ICP-MS), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In contrast to 5-FU, the outcomes of the cytotoxicity assay lacked any comparable results for 5-FU@CuS/NH2 -UiO-66.
Collapse
Affiliation(s)
- Marjan Gholami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Jampilek J, Kralova K. Advances in Nanostructures for Antimicrobial Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2388. [PMID: 35407720 PMCID: PMC8999898 DOI: 10.3390/ma15072388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Microbial infections caused by a variety of drug-resistant microorganisms are more common, but there are fewer and fewer approved new antimicrobial chemotherapeutics for systemic administration capable of acting against these resistant infectious pathogens. Formulation innovations of existing drugs are gaining prominence, while the application of nanotechnologies is a useful alternative for improving/increasing the effect of existing antimicrobial drugs. Nanomaterials represent one of the possible strategies to address this unfortunate situation. This review aims to summarize the most current results of nanoformulations of antibiotics and antibacterial active nanomaterials. Nanoformulations of antimicrobial peptides, synergistic combinations of antimicrobial-active agents with nitric oxide donors or combinations of small organic molecules or polymers with metals, metal oxides or metalloids are discussed as well. The mechanisms of actions of selected nanoformulations, including systems with magnetic, photothermal or photodynamic effects, are briefly described.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
12
|
Zhu S, Yu J, Xiong S, Ding Y, Zhou X, Hu Y, Chen W, Lin Y, Dao L. Fabrication and insights into the mechanisms of collagen‐based hydrogels with the high cell affinity and antimicrobial activity. J Appl Polym Sci 2022. [DOI: 10.1002/app.51623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Hangzhou China
| | - Jiehang Yu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Hangzhou China
| | - Shanbai Xiong
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University Wuhan China
| | - Yuting Ding
- College of Food Science and Technology Zhejiang University of Technology Hangzhou China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Hangzhou China
| | - Xuxia Zhou
- College of Food Science and Technology Zhejiang University of Technology Hangzhou China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Hangzhou China
| | - Yang Hu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University Wuhan China
| | - Wenxin Chen
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University Wuhan China
| | - Yuanli Lin
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University Wuhan China
| | - Linrui Dao
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University Wuhan China
| |
Collapse
|
13
|
Veisi H, Sayadi M, Morakabati N, Tamoradi T, Karmakar B. Au NPs fabricated on biguanidine-modified Zr-UiO-66 MOFs: a competent reusable heterogeneous nanocatalyst in the green synthesis of propargylamines. NEW J CHEM 2022. [DOI: 10.1039/d1nj02827h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we utilized functionalized metal organic frameworks (MOFs) as a host matrix to embed gold (Au) nanoparticles.
Collapse
Affiliation(s)
- Hojat Veisi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Marzieh Sayadi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Neko Morakabati
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Taiebeh Tamoradi
- Department of Chemistry, Production Technology Research Institute-ACECR, Ahvaz, Iran
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, 24-Parganas (North), India
| |
Collapse
|
14
|
Polash SA, Khare T, Kumar V, Shukla R. Prospects of Exploring the Metal-Organic Framework for Combating Antimicrobial Resistance. ACS APPLIED BIO MATERIALS 2021; 4:8060-8079. [PMID: 35005933 DOI: 10.1021/acsabm.1c00832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infectious diseases are a major public health concern globally. Infections caused by pathogens with resistance against commonly used antimicrobial drugs or antibiotics (known as antimicrobial resistance, AMR) are becoming extremely difficult to control. AMR has thus been declared as one of the top 10 global public health threats, as it has very limited solutions. The drying pipeline of effective antibiotics has further worsened the situation. There is no absolute treatment, and the limitations of existing methods warrant further development in antimicrobials. Recent developments in the nanomaterial field present them as promising therapeutics and effective alternative to conventional antibiotics and synthetic drugs. The metal-organic framework (MOF) is a recent addition to the antimicrobial category with superior properties. The MOF exerts antimicrobial action on a wide range of species and is highly biocompatible. Additionally, their porous structures allow the incorporation of biomolecules and drugs for synergistic antimicrobial action. This review provides an inclusive summary of the molecular events responsible for resistance development and current trends in antimicrobials to combat antibiotic resistance and explores the potential role of the MOF in tackling the drug-resistant microbial species.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
15
|
Ferraboschi P, Ciceri S, Grisenti P. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics (Basel) 2021; 10:1534. [PMID: 34943746 PMCID: PMC8698798 DOI: 10.3390/antibiotics10121534] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022] Open
Abstract
Lysozyme is a ~14 kDa protein present in many mucosal secretions (tears, saliva, and mucus) and tissues of animals and plants, and plays an important role in the innate immunity, providing protection against bacteria, viruses, and fungi. Three main different types of lysozymes are known: the c-type (chicken or conventional type), the g-type (goose type), and the i-type (invertebrate type). It has long been the subject of several applications due to its antimicrobial properties. The problem of antibiotic resistance has stimulated the search for new molecules or new applications of known compounds. The use of lysozyme as an alternative antibiotic is the subject of this review, which covers the results published over the past two decades. This review is focused on the applications of lysozyme in medicine, (the treatment of infectious diseases, wound healing, and anti-biofilm), veterinary, feed, food preservation, and crop protection. It is available from a wide range of sources, in addition to the well-known chicken egg white, and its synergism with other compounds, endowed with antimicrobial activity, are also summarized. An overview of the modified lysozyme applications is provided in the form of tables.
Collapse
Affiliation(s)
- Patrizia Ferraboschi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via C. Saldini 50, 20133 Milano, Italy;
| | - Samuele Ciceri
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy;
| | | |
Collapse
|
16
|
Advances in photodynamic antimicrobial chemotherapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Zhu P, Lin J, Xie L, Duan M, Chen D, Luo D, Wu Y. Visible Light Response Photocatalytic Performance of Z-Scheme Ag 3PO 4/GO/UiO-66-NH 2 Photocatalysts for the Levofloxacin Hydrochloride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13309-13321. [PMID: 34743516 DOI: 10.1021/acs.langmuir.1c01901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A Ag3PO4/GO/UiO-66-NH2(AGU) composite photocatalyst was prepared by an ultrasonic-assisted in situ precipitation method. The optical property, structure, composition, and morphology of photocatalysts were investigated using UV-vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy, and charge flow tracking by photodeposition of Pt and PbO2 nanoparticles. In comparison with Ag3PO4 and Ag3PO4/UiO-66-NH2(AU), the AGU composite photocatalyst showed heightened photocatalytic performance for the degradation of levofloxacin hydrochloride (LVF). The AGU photocatalyst (dosage: 0.8 g/L) with 1% mass content of graphene oxide (GO), the mass ratio of Ag3PO4 and UiO-66-NH2(U66N) reached 2:1, showed the highest photodegradation rate of 94.97% for 25 mg/L LVF after 60 min of visible light irradiation at pH = 6. The formation of a heterojunction and the addition of GO synergistically promote faster separation of electron-hole pairs, retain more active substances, and enhance the performance of the photocatalyst. Furthermore, the mechanism of the Z-scheme of the AGU composite photocatalytic is proposed.
Collapse
Affiliation(s)
- Pengfei Zhu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Research Institute of industrial hazardous waste disposal and resource utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Jinru Lin
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Lisi Xie
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Ming Duan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Dandan Chen
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Dan Luo
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Yongting Wu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| |
Collapse
|
18
|
Veisi H, Abrifam M, Kamangar SA, Pirhayati M, Saremi SG, Noroozi M, Tamoradi T, Karmakar B. Pd immobilization biguanidine modified Zr-UiO-66 MOF as a reusable heterogeneous catalyst in Suzuki-Miyaura coupling. Sci Rep 2021; 11:21883. [PMID: 34750439 PMCID: PMC8575879 DOI: 10.1038/s41598-021-00991-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
In recent days, nanohybrid metal organic frameworks (MOF) have been considered as next generation catalysts due to their unique features like large surface to volume ratio, tailorable geometry, uniform pore sizes and homogeneous distribution of active sites. In this report, we address the biguanidine modified 3D Zr-centred MOF UiO-66-NH2 following a post synthetic modification approach. Utilizing the excellent chelating ability of biguanidine, Pd ions are immobilized over the host matrix MOF. The as-synthesized material was physicochemically characterized using a broad range of analytical techniques like FT-IR, electron microscopy, EDS, elemental mapping, XRD and ICP-OES. Subsequently the material has been catalytically employed in the classical Suzuki-Miyaura coupling towards the synthesis of diverse biphenyl derivatives at sustainable conditions. There are very few reports on the covalently modified MOFs towards the organic coupling reactions. The catalyst has been isolated by centrifugation and recycled in 9 consecutive runs with almost insignificant leaching and minute decrease in reactivity.
Collapse
Affiliation(s)
- Hojat Veisi
- Department of Chemistry, Payame Noor University, Tehran, Iran.
| | - Mozhdeh Abrifam
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | | | - Mozhgan Pirhayati
- Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, Iran
| | | | - Mohammad Noroozi
- Center for Research and Development of Petroleum Technologies at Kermanshah, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Taiebeh Tamoradi
- Department of Chemistry, Production Technology Research Institute-ACECR, Ahvaz, Iran.
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, 24-Parganas (North), Gobardanga, India.
| |
Collapse
|
19
|
Quijia CR, Alves RC, Hanck-Silva G, Galvão Frem RC, Arroyos G, Chorilli M. Metal-organic frameworks for diagnosis and therapy of infectious diseases. Crit Rev Microbiol 2021; 48:161-196. [PMID: 34432563 DOI: 10.1080/1040841x.2021.1950120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infectious diseases are one of the leading cause of mortality and morbidity worldwide. Metal-Organic Frameworks (MOFs), which are porous coordination materials composed of bridging organic ligands and metallic ions or clusters, exhibits great potential to be used against several pathogens, such as bacteria, viruses, fungi and protozoa. MOFs can show sustained release capability, high surface area, adjustable pore size and structural flexibility, which makes them good candidates for new therapeutic systems. This review provides a detailed summary of the biological application of MOFs, focussing on diagnosis and treatment of infectious diseases. MOFs have been reported for usage as antimicrobial agents, drug delivery systems, therapeutic composites, nanozymes and phototherapies. Furthermore, different MOF-based biosensors have also been developed to detect specific pathogens by electrochemical, fluorometric and colorimetric assays. Finally, we present limitations and perspectives in this field.
Collapse
Affiliation(s)
| | - Renata Carolina Alves
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, Brazil
| | - Gilmar Hanck-Silva
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, Brazil
| | | | - Guilherme Arroyos
- Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, Brazil
| |
Collapse
|
20
|
Veisi H, Neyestani N, Pirhayati M, Ahany Kamangar S, Lotfi S, Tamoradi T, Karmakar B. Copper nanoparticle anchored biguanidine-modified Zr-UiO-66 MOFs: a competent heterogeneous and reusable nanocatalyst in Buchwald-Hartwig and Ullmann type coupling reactions. RSC Adv 2021; 11:22278-22286. [PMID: 35480808 PMCID: PMC9034177 DOI: 10.1039/d1ra02634h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
We have designed a functionalized metal-organic framework (MOF) of UiO topology as a support, with an extremely high surface area, adjustable pore sizes and stable crystalline coordination polymeric structure and implanted copper (Cu) nanoparticles thereon. The core three dimensional Zr-derived MOF (UiO-66-NH2) was modified with a biguanidine moiety following a covalent post-functionalization approach. The morphological and physicochemical features of the material were determined using analytical methods such as FT-IR, SEM, TEM, EDX, atomic mapping, XRD and ICP-OES. The SEM and XRD results justified the unaffected morphology of Zr-MOF after structural modifications. The as-synthesized UiO-66-biguanidine/Cu nanocomposite was catalytically explored in the aryl and heteroaryl Buchwald-Hartwig C-N and Ullmann type C-O cross coupling reactions with excellent yields. A library of biaryl amine and biaryl ethers was synthesized over the catalyst under mild and green conditions. Furthermore, the catalyst was isolated by centrifugation and recycled 11 times with no significant copper leaching or change in its activity.
Collapse
Affiliation(s)
- Hojat Veisi
- Department of Chemistry, Payame Noor University (PNU) Tehran Iran
| | - Narges Neyestani
- Department of Chemistry, Payame Noor University (PNU) Tehran Iran
| | - Mozhgan Pirhayati
- Department of Applied Chemistry, Faculty of Science, Malayer University Malayer Iran
| | | | - Shahram Lotfi
- Department of Chemistry, Payame Noor University (PNU) Tehran Iran
| | - Taiebeh Tamoradi
- Chemistry Department, Production Technology Research Institute-ACECR Ahvaz Iran
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College 24-Parganas (North) India
| |
Collapse
|
21
|
Zhu J, Qiu W, Yao C, Wang C, Wu D, Pradeep S, Yu J, Dai Z. Water-stable zirconium-based metal-organic frameworks armed polyvinyl alcohol nanofibrous membrane with enhanced antibacterial therapy for wound healing. J Colloid Interface Sci 2021; 603:243-251. [PMID: 34186401 DOI: 10.1016/j.jcis.2021.06.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/19/2023]
Abstract
Inadequate water-stability and antibacterial activity limit the biomedical application of polyvinyl alcohol (PVA)-based membranes in moist environments. In this work, we propose a strategy to improve the water-stability of PVA membranes via metal complexation and heat treatment. We report a simple routine where the zirconium-based UiO-66-NH2 metal-organic frameworks (MOFs) are nucleated as a layer on the surface of PVA nanofibrous membranes (UiO-66-NH2@PVA NFMs). We find that the chemical modification of membranes increases their hydrophilicity and adds on mechanical support for the brittle UiO-66-NH2 MOFs. Additionally, we demonstrate the application of UiO-66-NH2 MOFs as drug carriers for antibacterial drug, levofloxacin (LV). The active drug component is preloaded during the one-step nucleation process. The obtained LV loaded UiO-66-NH2@PVA NFMs (LV@UiO-66-NH2@PVA) are shown to be bactericidal with the efficiency > 99.9% at 100 μg/mL against two bacterial species, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Compared with the commercially available gauzes, the UiO-66-NH2@PVA and LV@UiO-66-NH2@PVA treatments will significantly improve the wound healing process. Animal studies show that the LV@UiO-66-NH2@PVA will effectively offer a safe alternative solution for the patients to protect against bacterial infections, demonstrating the potential application of MOF-based NFMs as wound dressing agents.
Collapse
Affiliation(s)
- Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Weiwang Qiu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China; Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Chengjian Yao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Chun Wang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Dequn Wu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China; Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shravan Pradeep
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Zijian Dai
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
22
|
Deng X, Shao Z, Zhao Y. Solutions to the Drawbacks of Photothermal and Photodynamic Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002504. [PMID: 33552860 PMCID: PMC7856884 DOI: 10.1002/advs.202002504] [Citation(s) in RCA: 308] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/24/2020] [Indexed: 05/11/2023]
Abstract
Phototherapy such as photothermal therapy and photodynamic therapy in cancer treatment has been developed quickly over the past few years for its noninvasive nature and high efficiency. However, there are still many drawbacks in phototherapy that prevent it from clinical applications. Thus, scientists have designed different systems to overcome the issues associated with phototherapy, including enhancing the targeting ability of phototherapy, low-temperature photothermal therapy, replacing near-infrared light with other excitation sources, and so on. This article discusses the problems and shortcomings encountered in the development of phototherapy and highlights possible solutions to address them so that phototherapy may become a useful cancer treatment approach in clinical practice. This article aims to give a brief summary about current research advancements in phototherapy research and provides a quick guideline toward future developments in the field.
Collapse
Affiliation(s)
- Xiangyu Deng
- Department of Orthopaedic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Zengwu Shao
- Department of Orthopaedic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yanli Zhao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| |
Collapse
|
23
|
Çelik Ç, Farajzadeh N, Akın M, Atmaca GY, Sağlam Ö, Şaki N, Erdoğmuş A, Koçak MB. Investigation of the biological and photophysicochemical properties of new non-peripheral fluorinated phthalocyanines. Dalton Trans 2021; 50:2736-2745. [DOI: 10.1039/d0dt04351f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The photophysicochemical and biological properties of new fluorinated phthalocyanines were examined. The synergistic effect of phthalocyanines used as colorants in ink formulas with other chemicals available was investigated for the first time.
Collapse
Affiliation(s)
- Çetin Çelik
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
- Department of Chemistry
| | - Nazli Farajzadeh
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Mustafa Akın
- Petroyag ve Kimyasallar San. Ve Tic. A.S R&D Center
- Kocaeli
- Turkey
| | | | - Özgül Sağlam
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Neslihan Şaki
- Department of Chemistry
- Kocaeli University
- Kocaeli
- Turkey
| | - Ali Erdoğmuş
- Department of Chemistry
- Yildiz Technical University
- Istanbul
- Turkey
| | | |
Collapse
|
24
|
Yang Z, Qiao Y, Li J, Wu FG, Lin F. Novel Type of Water-Soluble Photosensitizer from Trichoderma reesei for Photodynamic Inactivation of Gram-Positive Bacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13227-13235. [PMID: 33119308 DOI: 10.1021/acs.langmuir.0c02109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising alternative to traditional antibiotics for the treatment of bacterial infections, which inactivates a broad spectrum of bacteria. However, many traditional photosensitizers (PSs) are hydrophobic with poor water solubility and easy aggregation. On the other hand, some light sources such as ultraviolet (UV) have poor penetration and high cytotoxicity. Both issues lead to undesired photodynamic therapy efficacy. To overcome these issues, we develop a novel water-soluble natural PS (sorbicillinoids) obtained by microbial fermentation using recombinant filamentous fungus Trichoderma reesei. Sorbicillinoids could effectively generate singlet oxygen (1O2) under UV light irradiation and ultimately display photoinactivation activity on Gram-positive bacteria including Staphylococcus aureus, Bacillus subtilis, and Micrococcus luteus but not Gram-negative ones such as Escherichia coli and Proteus vulgaris. Sorbicillinoids were found to enter S. aureus but not E. coli. S. aureus treated with sorbicillinoids and UV light displayed high levels of intracellular reactive oxygen species (ROS), notable DNA photocleavage, and compromised cell semipermeability without overt cell membrane disruption, none of which was found in the treated E. coli. All these contribute to the sorbicillinoid-based photoinactivation of Gram-positive bacteria. Moreover, the dark toxicity and phototoxicity on mammalian cells or hemolysis activity of sorbicillinoids is negligible, showing its excellent biocompatibility. This study expands the utilization of UV light for surface sterilization to disinfection in solution. Therefore, sorbicillinoids, a type of secondary metabolite from fungus, have a promising future as a new PS for APDT using a nontoxic dose of UV irradiation.
Collapse
Affiliation(s)
- Zihuayuan Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ying Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Junying Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
25
|
Mendes RF, Figueira F, Leite JP, Gales L, Almeida Paz FA. Metal–organic frameworks: a future toolbox for biomedicine? Chem Soc Rev 2020; 49:9121-9153. [DOI: 10.1039/d0cs00883d] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present review focuses on the use of Metal–Organic Frameworks, (MOFs) highlighting the most recent developments in the biological field and as bio-sensors.
Collapse
Affiliation(s)
- Ricardo F. Mendes
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Flávio Figueira
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - José P. Leite
- Abel Salazar Biomedical Sciences Institute
- University of Porto
- 4169-007 Porto
- Portugal
- IBMC – Instituto de Biologia Molecular e Celular
| | - Luís Gales
- Abel Salazar Biomedical Sciences Institute
- University of Porto
- 4169-007 Porto
- Portugal
- IBMC – Instituto de Biologia Molecular e Celular
| | - Filipe A. Almeida Paz
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|