1
|
Xia Y, Meng Y, Yu R, Teng Z, Zhou J, Wang S. Bio-Inspired Hydrogel-Elastomer Actuator with Bidirectional Bending and Dynamic Structural Color. Molecules 2023; 28:6752. [PMID: 37836595 PMCID: PMC10574087 DOI: 10.3390/molecules28196752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
In nature, some creatures can change their body shapes and surface colors simultaneously to respond to the external environments, which greatly inspired researchers in the development of color-tunable soft actuators. In this work, we present a facile method to prepare a smart hydrogel actuator that can bend bidirectionally and change color simultaneously, just like an octopus. The actuator is fabricated by elastomer/hydrogel bilayer and the hydrogel layer was decorated with thermoresponsive microgels as the photonic crystal blocks. Compared with the previously reported poly(N-isopropylacrylamide) hydrogel-based bilayer hydrogel actuators, which are generally limited to one-directional deformation, the elastomer/hydrogel bilayer actuator prepared in our work exhibits unique bidirectional bending behavior in accordance with the change of structural color. The bending degrees can be changed from -360° to 270° in response to solution temperatures ranging from 20 °C to 60 °C. At the same time, the surface color changes from red to green, and then to blue, covering the full visible light spectrum. The bending direction and degree of the hydrogel actuator can easily be adjusted by tuning the layer thickness ratio of the elastomer/hydrogel or the composition of the hydrogel. The color-tunable hydrogel-elastomer actuator reported in this work can achieve both programmable deformations and color-changing highly resembling the natural actuating behaviors of creatures.
Collapse
Affiliation(s)
- Yongqing Xia
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Y.M.); (R.Y.); (Z.T.); (J.Z.); (S.W.)
| | | | | | | | | | | |
Collapse
|
2
|
Ye Y, Yu L, Lizundia E, Zhu Y, Chen C, Jiang F. Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chem Rev 2023; 123:9204-9264. [PMID: 37419504 DOI: 10.1021/acs.chemrev.2c00618] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Ionic conductors (ICs) find widespread applications across different fields, such as smart electronic, ionotronic, sensor, biomedical, and energy harvesting/storage devices, and largely determine the function and performance of these devices. In the pursuit of developing ICs required for better performing and sustainable devices, cellulose appears as an attractive and promising building block due to its high abundance, renewability, striking mechanical strength, and other functional features. In this review, we provide a comprehensive summary regarding ICs fabricated from cellulose and cellulose-derived materials in terms of fundamental structural features of cellulose, the materials design and fabrication techniques for engineering, main properties and characterization, and diverse applications. Next, the potential of cellulose-based ICs to relieve the increasing concern about electronic waste within the frame of circularity and environmental sustainability and the future directions to be explored for advancing this field are discussed. Overall, we hope this review can provide a comprehensive summary and unique perspectives on the design and application of advanced cellulose-based ICs and thereby encourage the utilization of cellulosic materials toward sustainable devices.
Collapse
Affiliation(s)
- Yuhang Ye
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Le Yu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
- BCMaterials Lab, Basque Center for Materials, Applications and Nanostructures, Leioa 48940, Spain
| | - Yeling Zhu
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Chaoji Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
3
|
Cao S, Aimi J, Yoshio M. Electroactive Soft Actuators Based on Columnar Ionic Liquid Crystal/Polymer Composite Membrane Electrolytes Forming 3D Continuous Ionic Channels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43701-43710. [PMID: 36044399 DOI: 10.1021/acsami.2c11029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we report low-voltage-driven fast-response nanostructured columnar ionic liquid crystal/polymer composite actuators that form three-dimensional continuous ion channels. A three-component self-assembly of a zwitterionic rod-like molecule (49.5 wt %), an ionic liquid (27.5 wt %), and poly(vinyl alcohol) (23.0 wt %) provided a free-standing stretchable membrane electrolyte. The dissociated ions can move through a continuous 3D ionophilic matrix surrounding the hydrophobic columns formed by the hexagonally organized rod-mesogens. Three-layer actuators composed of the electrolyte film sandwiched between two conductive polymer film electrodes of doped polythiophene exhibited a bending motion with 0.32% strain and moved 2 mm within 220 ms under 1 V at 0.1 Hz in 70% relative humidity due to the formation of electric double layers at the soft solid electrolyte/electrode interfaces. The bending strain of the columnar nanostructured actuator is comparable to those of polymer iongel actuators and block polymer actuators containing 25-80 wt % of ionic liquids. It is noteworthy that a small number of ions organized into the 3D nanochannels can generate the large bending deformation, which can contribute to reduce the risk of leakage of ions and the production cost. In addition, we have demonstrated a low-voltage-driven deformable mirror actuator that is expected to be applied to optical devices.
Collapse
Affiliation(s)
- Siyu Cao
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Junko Aimi
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Masafumi Yoshio
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
4
|
Qu M, Li S, Chen J, Xiao Y, Xiao J. Ion Transport in the EMITFSI/PVDF System at Different Temperatures: A Molecular Dynamics Simulation. ACS OMEGA 2022; 7:9333-9342. [PMID: 35356691 PMCID: PMC8945056 DOI: 10.1021/acsomega.1c06160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/02/2022] [Indexed: 05/13/2023]
Abstract
We used all-atom molecular dynamics simulations to study the ion transport in the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/poly(vinylidene fluoride) (EMITFSI/PVDF) system with 40.05 wt % EMITFSI at different temperatures. The glass-transition temperature (T g = 204 K) of this system shows a good agreement with the experimental value (200 K). With the increase of temperature, the peaks of the pair correlation function show an increasing trend. Interestingly, the coordination numbers of ion pairs and the degree of independent ion motion are mainly affected by the binding energy between ion pairs as the temperature increases. In addition, the ion transport properties with increasing temperature can be studied by the ion-pair relaxation times, ion-pair lifetimes, and diffusion coefficients. The simulation results illustrate that the ion transport is intensified. Especially, the cations can always diffuse faster than the anions. The power law shows that mobilities of anions and cations are seen to exhibit a "superionic" behavior. With the increase of temperature, transference numbers of anions decrease first and then increase and transference numbers of cations show the opposite changes; ionic conductivity increases gradually; and viscosity decreases gradually, indicating that the diffusion resistance of ions decreases. In general, after adding PVDF into the EMITFSI system, the glass-transition temperature and viscosity increase, the ionic conductivity and degree of independent ion motion decrease, and diffusion coefficients of cations decrease faster than those of the anions.
Collapse
Affiliation(s)
- Minghe Qu
- Molecules
and Materials Computation Institute, School of Chemistry and Chemical
Engineering, Nanjing University of Science
and Technology, Nanjing 210094, P. R. China
| | - Shenshen Li
- Molecules
and Materials Computation Institute, School of Chemistry and Chemical
Engineering, Nanjing University of Science
and Technology, Nanjing 210094, P. R. China
| | - Jian Chen
- Chuannan
Machinery Manufacturing Plant, Luzhou 646000, P. R. China
| | - Yunqin Xiao
- Molecules
and Materials Computation Institute, School of Chemistry and Chemical
Engineering, Nanjing University of Science
and Technology, Nanjing 210094, P. R. China
- Science
and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemical Technology, Xiangyang 441003, P. R. China
| | - Jijun Xiao
- Molecules
and Materials Computation Institute, School of Chemistry and Chemical
Engineering, Nanjing University of Science
and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
5
|
Yuan H, Zhang Y, Lu G, Chen F, Xue T, Shu X, Zhao Y, Nie J, Zhu X. Transparent organogel based on photopolymerizable magnetic cationic monomer for electromagnetic wave absorbing. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Tamura S, Kiyono R, Hirai T. Dielectric elastomer actuator behavior of silicone/cyanoethylsucrose composite films: Morphology and space‐charge distribution. NANO SELECT 2021. [DOI: 10.1002/nano.202100023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Satoshi Tamura
- Graduate School of Medicine Science and Technology Shinshu University 4‐17‐1 Wakasato Nagano Nagano 380‐8533 Japan
- Business Development Unit Shin‐Etsu Polymer Co., Ltd. 1‐9 Kanda‐sudacho Chiyoda‐ku Tokyo 101‐0041 Japan
| | - Ryotaro Kiyono
- Faculty of Engineering Shinshu University 4‐17‐1 Wakasato Nagano Nagano 380‐8553 Japan
| | - Toshihiro Hirai
- Fiber Innovation Incubator Faculty of Textile Science Technology Shinshu University 3‐15‐1 Tokida Ueda Nagano 386‐8567 Japan
| |
Collapse
|
7
|
Gou J, Liu W, Tang A. A renewable gel polymer electrolyte based on the different sized carboxylated cellulose with satisfactory comprehensive performance for rechargeable lithium ion battery. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|