1
|
Carubio RJ, Wang B, Ansorge‐Schumacher MB. Reaction Engineering for Asymmetric R-/ S-PAC Synthesis With Ephedrine or Pseudoephedrine Dehydrogenase in Pickering Emulsion. Eng Life Sci 2025; 25:e202400069. [PMID: 39990765 PMCID: PMC11842280 DOI: 10.1002/elsc.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/20/2024] [Accepted: 10/31/2024] [Indexed: 02/25/2025] Open
Abstract
The synthesis of enantiopure α-hydroxy ketones, particularly R- and S-phenylacetylcarbinol (PAC), represents an important process in the pharmaceutical industry, serving as a pivotal step in the production of drugs. Recently, two novel enzymes, ephedrine dehydrogenase (EDH) and pseudoephedrine dehydrogenase (PseDH), have been described. These enzymes enable the specific reduction of 1-phenyl-1,2-propanedione (PPD) to R-PAC and S-PAC, respectively. In this study, we transferred these enzymes into Pickering emulsions, which is an attractive reaction set-up for large-scale synthesis. The bioactive w/o Pickering emulsion (bioactive Pickering emulsion [BioPE]), in which methyl tert-butyl ether served as the continuous phase, was stabilized by silica nanoparticles. Formate dehydrogenase from Rhodococcus jostii was utilized for cofactor regeneration. Given the considerable complexity of the BioPE, this reaction system underwent a first-time application of design of experiment (DOE) for systematic engineering. A definitive screening design was employed to identify significant factors affecting space-time yield (STY) and conversion. Response surface methodology was used to optimize the conditions, resulting in the observation of a high STY of 4.2 g L⁻¹ h⁻¹ and a conversion of 83.2% for BioPE with EDH, and an STY of 4.4 g L⁻¹ h⁻¹ and a conversion of 64.5% for BioPE with PseDH.
Collapse
Affiliation(s)
| | - Bao‐Hsiang Wang
- Chair of Molecular BiotechnologyDresden University of TechnologyDresdenGermany
| | | |
Collapse
|
2
|
Dekker RI, Velandia SF, Kibbelaar HVM, Morcy A, Sadtler V, Roques-Carmes T, Groenewold J, Kegel WK, Velikov KP, Bonn D. Is there a difference between surfactant-stabilised and Pickering emulsions? SOFT MATTER 2023; 19:1941-1951. [PMID: 36808176 DOI: 10.1039/d2sm01375d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
What measurable physical properties allow one to distinguish surfactant-stabilised from Pickering emulsions? Whereas surfactants influence oil/water interfaces by lowering the oil/water interfacial tension, particles are assumed to have little effect on the interfacial tension. Here we perform interfacial tension (IFT) measurements on three different systems: (1) soybean oil and water with ethyl cellulose nanoparticles (ECNPs), (2) silicone oil and water with the globular protein bovine serum albumin (BSA), and (3) sodium dodecyl sulfate (SDS) solutions and air. The first two systems contain particles, while the third system contains surfactant molecules. We observe a significant decrease in interfacial tension with increasing particle/molecule concentration in all three systems. We analyse the surface tension data using the Gibbs adsorption isotherm and the Langmuir equation of state for the surface, resulting in surprisingly high adsorption densities for the particle-based systems. These seem to behave very much like the surfactant system: the decrease in tension is due to the presence of many particles at the interface, each with an adsorption energy of a few kBT. Dynamic interfacial tension measurements show that the systems are in equilibrium, and that the characteristic time scale for adsorption is much longer for particle-based systems than for surfactants, in line with their size difference. In addition, the particle-based emulsion is shown to be less stable against coalescence than the surfactant-stabilised emulsion. This leaves us with the conclusion that we are not able to make a clear distinction between the surfactant-stabilised and Pickering emulsions.
Collapse
Affiliation(s)
- Riande I Dekker
- van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- Van't Hoff Laboratory of Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Santiago F Velandia
- van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville, 54001 Nancy, France
| | - Heleen V M Kibbelaar
- van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Azeza Morcy
- van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Véronique Sadtler
- Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville, 54001 Nancy, France
| | - Thibault Roques-Carmes
- Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville, 54001 Nancy, France
| | - Jan Groenewold
- Van't Hoff Laboratory of Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Willem K Kegel
- Van't Hoff Laboratory of Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Krassimir P Velikov
- van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- Unilever Innovation Centre Wageningen, Bronland 14, 6708 WH Wageningen, The Netherlands
| | - Daniel Bonn
- van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Chachanidze R, Xie K, Lyu J, Jaeger M, Leonetti M. Breakups of Chitosan Microcapsules in Extensional Flow. J Colloid Interface Sci 2022; 629:445-454. [DOI: 10.1016/j.jcis.2022.08.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
|
4
|
Abstract
AbstractThe processes in which droplets evaporate from solid surfaces, leaving behind distinct deposition patterns, have been studied extensively for variety of solutions. In this work, by combining different microscopy techniques (confocal fluorescence, video and Raman) we investigate pattern formation and evaporation-induced phase change in drying oil-in-water emulsion drops. This combination of techniques allows us to perform drop shape analysis while visualizing the internal emulsion structure simultaneously. We observe that drying of the continuous water phase of emulsion drops on hydrophilic surfaces favors the formation of ring-like zones depleted of oil droplets at the contact line, which originate from geometrical confinement of oil droplets by the meniscus. From such a depletion zone, a “coffee ring” composed of surfactant molecules forms as the water evaporates. On all surfaces drying induces emulsion destabilization by coalescence of oil droplets, commencing at the drop periphery. For hydrophobic surfaces, the coalescence of the oil droplets leads to a uniform oil film spreading out from the initial contact line. The evaporation dynamics of these composite drops indicate that the water in the continuous phase of the emulsion drops evaporates predominantly by diffusion through the vapor, showing no large differences to the evaporation of simple water drops.
Collapse
|