1
|
Shrestha R, Carpenter TS, Van QN, Agamasu C, Tonelli M, Aydin F, Chen D, Gulten G, Glosli JN, López CA, Oppelstrup T, Neale C, Gnanakaran S, Gillette WK, Ingólfsson HI, Lightstone FC, Stephen AG, Streitz FH, Nissley DV, Turbyville TJ. Membrane lipids drive formation of KRAS4b-RAF1 RBDCRD nanoclusters on the membrane. Commun Biol 2024; 7:242. [PMID: 38418613 PMCID: PMC10902389 DOI: 10.1038/s42003-024-05916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
The oncogene RAS, extensively studied for decades, presents persistent gaps in understanding, hindering the development of effective therapeutic strategies due to a lack of precise details on how RAS initiates MAPK signaling with RAF effector proteins at the plasma membrane. Recent advances in X-ray crystallography, cryo-EM, and super-resolution fluorescence microscopy offer structural and spatial insights, yet the molecular mechanisms involving protein-protein and protein-lipid interactions in RAS-mediated signaling require further characterization. This study utilizes single-molecule experimental techniques, nuclear magnetic resonance spectroscopy, and the computational Machine-Learned Modeling Infrastructure (MuMMI) to examine KRAS4b and RAF1 on a biologically relevant lipid bilayer. MuMMI captures long-timescale events while preserving detailed atomic descriptions, providing testable models for experimental validation. Both in vitro and computational studies reveal that RBDCRD binding alters KRAS lateral diffusion on the lipid bilayer, increasing cluster size and decreasing diffusion. RAS and membrane binding cause hydrophobic residues in the CRD region to penetrate the bilayer, stabilizing complexes through β-strand elongation. These cooperative interactions among lipids, KRAS4b, and RAF1 are proposed as essential for forming nanoclusters, potentially a critical step in MAP kinase signal activation.
Collapse
Affiliation(s)
- Rebika Shrestha
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Timothy S Carpenter
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Que N Van
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Constance Agamasu
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Fikret Aydin
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - De Chen
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Gulcin Gulten
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - James N Glosli
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Tomas Oppelstrup
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Chris Neale
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - William K Gillette
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Helgi I Ingólfsson
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Felice C Lightstone
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Andrew G Stephen
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Frederick H Streitz
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Dwight V Nissley
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Thomas J Turbyville
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA.
| |
Collapse
|
2
|
Shree S, McLean MA, Stephen AG, Sligar SG. Revealing KRas4b topology on the membrane surface. Biochem Biophys Res Commun 2023; 678:122-127. [PMID: 37633182 PMCID: PMC10528110 DOI: 10.1016/j.bbrc.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
KRas4b is a membrane-bound regulatory protein belonging to the family of small GTPases that function as a molecular switch, facilitating signal transduction from activated membrane receptors to intracellular pathways controlling cell growth and proliferation. Oncogenic mutations locking KRas4b in the active GTP state are responsible for nearly 85% of all Ras-driven cancers. Understanding the membrane-bound state of KRas4b is crucial for designing new therapeutic approaches targeting oncogenic KRas-driven signaling pathways. Extensive research demonstrates the significant involvement of the membrane bilayer in Ras-effector interactions, with anionic lipids playing a critical role in determining protein conformations The preferred topology of KRas4b for interacting with signaling partners has been a long-time question. Computational studies suggest a membrane-proximal conformation, while other biophysical methods like neutron reflectivity propose a membrane-distal conformation. To address these gaps, we employed FRET measurements to investigate the conformation of KRas4b. Using fully post-translationally modified KRas4b, we designed a Nanodisc based FRET assay to study KRas4b-membrane interactions. We suggest an extended conformation of KRas4b relative to the membrane surface. Measurement of FRET donor - acceptor distances reveal that a negatively charged membrane surface weakly favors closer association with the membrane surface. Our findings provide insights into the role of anionic lipids in determining the dynamic conformations of KRas4b and shed light on the predominant conformation of its topology on lipid headgroups.
Collapse
Affiliation(s)
- Shweta Shree
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Mark A McLean
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, United States
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
3
|
Li L, Herzog M, Möbitz S, Winter R. Liquid droplets of protein LAF1 provide a vehicle to regulate storage of the signaling protein K-Ras4B and its transport to the lipid membrane. Phys Chem Chem Phys 2021; 23:5370-5375. [PMID: 33645620 DOI: 10.1039/d1cp00007a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liquid-liquid phase separation has been shown to promote the formation of functional membraneless organelles involved in various cellular processes, including metabolism, stress response and signal transduction. Protein LAF1 found in P-granules phase separates into liquid-like droplets by patterned electrostatic interactions between acidic and basic tracts in LAF1 and has been used as model system in this study. We show that signaling proteins, such as K-Ras4B, a small GTPase that acts as a molecular switch and regulates many cellular processes including proliferation, apoptosis and cell growth, can colocalize in LAF1 droplets. Colocalization is facilitated by electrostatic interactions between the positively charged polybasic domain of K-Ras4B and the negatively charged motifs of LAF1. The interaction partners B- and C-Raf of K-Ras4B can also be recruited to the liquid droplets. Upon contact with an anionic lipid bilayer membrane, the liquid droplets dissolve and K-Ras4B is released, forming nanoclusters in the lipid membrane. Considering the high tuneability of liquid-liquid phase separation in the cell, the colocalization of signaling proteins and their effector molecules in liquid droplets may provide an additional vehicle for regulating storage and transport of membrane-associated signaling proteins such as K-Ras4B and offer an alternative strategy for high-fidelity signal output.
Collapse
Affiliation(s)
- Lei Li
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| | - Marius Herzog
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| | - Simone Möbitz
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| |
Collapse
|
4
|
López CA, Agarwal A, Van QN, Stephen AG, Gnanakaran S. Unveiling the Dynamics of KRAS4b on Lipid Model Membranes. J Membr Biol 2021; 254:201-216. [PMID: 33825026 PMCID: PMC8052243 DOI: 10.1007/s00232-021-00176-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/16/2021] [Indexed: 12/23/2022]
Abstract
Small GTPase proteins are ubiquitous and responsible for regulating several processes related to cell growth and differentiation. Mutations that stabilize their active state can lead to uncontrolled cell proliferation and cancer. Although these proteins are well characterized at the cellular scale, the molecular mechanisms governing their functions are still poorly understood. In addition, there is limited information about the regulatory function of the cell membrane which supports their activity. Thus, we have studied the dynamics and conformations of the farnesylated KRAS4b in various membrane model systems, ranging from binary fluid mixtures to heterogeneous raft mimics. Our approach combines long time-scale coarse-grained (CG) simulations and Markov state models to dissect the membrane-supported dynamics of KRAS4b. Our simulations reveal that protein dynamics is mainly modulated by the presence of anionic lipids and to some extent by the nucleotide state (activation) of the protein. In addition, our results suggest that both the farnesyl and the polybasic hypervariable region (HVR) are responsible for its preferential partitioning within the liquid-disordered (Ld) domains in membranes, potentially enhancing the formation of membrane-driven signaling platforms.
Collapse
Affiliation(s)
- Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Animesh Agarwal
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Que N Van
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - Andrew G Stephen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
5
|
Travers T, López CA, Agamasu C, Hettige JJ, Messing S, García AE, Stephen AG, Gnanakaran S. Anionic Lipids Impact RAS-Binding Site Accessibility and Membrane Binding Affinity of CRAF RBD-CRD. Biophys J 2020; 119:525-538. [PMID: 32649863 PMCID: PMC7399501 DOI: 10.1016/j.bpj.2020.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 11/25/2022] Open
Abstract
CRAF activation requires binding to membrane-anchored and active GTP-bound RAS. Whereas its RAS-binding domain (RBD) contains the main binding interface to the RAS G domain, its cysteine-rich domain (CRD) is responsible for association to anionic lipid-rich membranes. Both RAF domains are connected by a short linker, and it remains unclear if the two domains act independently or if one domain can impact the function of the other. Here, we used a combination of coarse-grained and all-atom molecular dynamics simulations of a CRAF RBD-CRD construct to investigate the dynamics of the RBD when it is tethered to CRD that is anchored to a POPC:POPS model membrane. First, we show that the RBD positioning is very dynamic with a preferential localization near the membrane surface. Next, we show that membrane-localized RBD has its RAS-binding interface mostly inaccessible because of its proximity to the membrane. Several positively charged residues in this interface were identified from simulations as important for driving RBD association to the membrane. Surface plasmon resonance (SPR) measurements confirmed that mutations of these RBD residues reduced the liposome partitioning of RBD-CRD. Last, simulations indicated that the presence of RBD near the membrane led to a local enrichment of anionic lipids that could potentially enhance the membrane affinity of the entire RBD-CRD construct. This was supported by SPR measurements that showed stronger liposome partitioning of RBD-CRD relative to CRD alone. These findings thus suggest that the RBD and CRD have synergistic effects on their membrane dynamics, with CRD bringing RBD closer to the membrane that impacts its accessibility to RAS and with RBD causing local anionic lipid enrichment that enhances the overall affinity between the membrane and RBD-CRD. These mechanisms have potential implications on the order of events of the interactions between RAS and CRAF at the membrane.
Collapse
Affiliation(s)
- Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos, New Mexico; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos, New Mexico
| | - Constance Agamasu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Reseach, Inc., Frederick, Maryland
| | | | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Reseach, Inc., Frederick, Maryland
| | - Angel E García
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Reseach, Inc., Frederick, Maryland
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos, New Mexico.
| |
Collapse
|