1
|
Trusova VM, Tarabara UK, Thomsen MH, Gorbenko GP. Structural modification of lipid membranes by polyphenols: A fluorescence spectroscopy study. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184411. [PMID: 39855323 DOI: 10.1016/j.bbamem.2025.184411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
The present study investigates the molecular mechanisms of polyphenol-lipid interactions and their impact on membrane properties. Using pyrene and DPH as reporter molecules, we examined the impact of quercetin, curcumin, gallic, and salicylic acids on membranes composed of phosphatidylcholine (PC) and its mixtures with phosphatidylglycerol (PG), cardiolipin (CL), and cholesterol (Chol). Quercetin was found to increase the lipid order without affecting the lipid bilayer free volume, indicating interactions near the membrane surface. In turn, curcumin exhibited more complex effects, reducing free volume in PC but increasing it in PG vesicles, reflecting its amphiphilic structure and variable penetration depth. Gallic and salicylic acids selectively increased free volume at the membrane core without influencing lipid order at the upper regions of lipid bilayer. The results obtained demonstrate that polyphenol structure and lipid composition dictate the resultant pattern of polyphenol-membranes interactions, which may have implications for drug delivery and nutraceutical design.
Collapse
Affiliation(s)
- Valeriya M Trusova
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine.
| | - Uliana K Tarabara
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Mette H Thomsen
- AAU Energy, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | - Galyna P Gorbenko
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|
2
|
Han J, Meade J, Devine D, Sadeghpour A, Rappolt M, Goycoolea FM. Chitosan-coated liposomal systems for delivery of antibacterial peptide LL17-32 to Porphyromonas gingivalis. Heliyon 2024; 10:e34554. [PMID: 39149035 PMCID: PMC11325287 DOI: 10.1016/j.heliyon.2024.e34554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/29/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Periodontal disease is triggered by surface bacterial biofilms where bacteria are less susceptible to antibiotic treatment. The development of liposome-based delivery mechanisms for the therapeutic use of antimicrobial peptides is an attractive alternative in this regard. The cationic antimicrobial peptide LL-37 (human cathelicidin) is well-known to exert antibacterial activity against P orphyromonas gingivalis, a keystone oral pathogen. However, the antibacterial activity of the 16-amino acid fragment (LL17-32) of LL-37, is unknown. In addition, there are still gaps in studies using liposomal formulations as delivery vehicles of antibacterial peptides against this pathogen. This study was designed to examine the influence of the different types of liposomal formulations to associate and deliver LL17-32 to act against P. gingivalis. Chitosans of varying Mw and degree of acetylation (DA) were adsorbed at the surface of soya lecithin (SL) liposomes. Their bulk (average hydrodynamic size, ζ-potential and membrane fluidity) and ultrastructural (d-spacing, half-bilayer thickness and the water layer thickness) biophysical properties were investigated by a panel of techniques (DLS, SAXS, M3-PALS, fluorescence spectroscopy and TEM imaging). Their association efficiency, in vitro release, stability, and efficacy in killing the periodontal pathogen P. gingivalis were also investigated. All liposomal systems possessed spherical morphologies and good shelf-life stabilities. Under physiological conditions, chitosan formulations with a high DA demonstrated enhanced stability in comparison to low DA-chitosan formulations. Chitosans and LL17-32 both decreased SL-liposomal membrane fluidity. LL17-32 exhibited a high degree of association with SL-liposomes without in vitro release. In biological studies, free LL17-32 or chitosans alone, demonstrated microbicidal activity against P. gingivalis, however this was attenuated when LL17-32 was loaded onto the SL-liposome delivery system, presumably due to the restrained release of the peptide. A property that could be harnessed in future studies (e.g., oral mucoadhesive slow-release formulations).
Collapse
Affiliation(s)
- Jinyang Han
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Josephine Meade
- School of Dentistry, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Deirdre Devine
- School of Dentistry, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
- Department of Cell Biology and Histology, University of Murcia, Campus de Espinardo, Murcia, 30100, Spain
| |
Collapse
|
3
|
Hao LS, Zhang MM, Li XF, Xin X, Zhao GL. Efficient regioselective enzymatic acylation of troxerutin: difference characterization of in vitro cellular uptake and cytotoxicity. Food Funct 2024; 15:5785-5796. [PMID: 38660890 DOI: 10.1039/d4fo00906a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In this study, we developed a multi-site acylation strategy to improve the lipophilicity and cellular uptake of troxerutin, a natural flavonoid with many health-promoting bioactivities. By clarifying the acylation properties of troxerutin catalyzed by lipases from different sources, a series of troxerutin ester derivatives acylated at different sites was synthesized, including troxerutin dipropyl (TDP), tripropyl (TTP), tetrapropyl (TEP), dibutyl (TDB), monohexyl (TMH), monooctyl (TMO) and monodecyl (TMD) esters. Interestingly, the troxerutin esters acylated at multiple sites with shorter fatty chains (TDP, TTP and TEP) had similar lipophilicity to the mono-acylated esters bearing longer fatty chains (TMH, TMO and TMD, respectively) and meanwhile demonstrated surprisingly lower cytotoxicity than that of the long fatty-chain mono-esters. In particular, the multi-acylated esters with shorter fatty chains showed remarkably higher cellular uptake than the mono-esters with long fatty chains. In vitro gastrointestinal digestion suggested that the multi-acylated esters of troxerutin were more resistant to gastrointestinal degradation than the mono-esters. These results indicated that multi-site acylation with short fatty chains could be an effective alternative to introducing one-site mono-acylation for the modification of troxerutin and other flavonoid compounds.
Collapse
Affiliation(s)
- Li-Sha Hao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Wushan Road 381, Guangzhou 510640, China.
| | - Meng-Meng Zhang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Dongsha Street 24, Guangzhou, Guangdong, 510225, China
| | - Xiao-Feng Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Wushan Road 381, Guangzhou 510640, China.
| | - Xuan Xin
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Dongsha Street 24, Guangzhou, Guangdong, 510225, China.
| | - Guang-Lei Zhao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
4
|
Atma Y, Murray BS, Sadeghpour A, Goycoolea FM. Encapsulation of short-chain bioactive peptides (BAPs) for gastrointestinal delivery: a review. Food Funct 2024; 15:3959-3979. [PMID: 38568171 DOI: 10.1039/d3fo04195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The majority of known peptides with high bioactivity (BAPs) such as antihypertensive, antidiabetic, antioxidant, hypocholesterolemic, anti-inflammatory and antimicrobial actions, are short-chain sequences of less than ten amino acids. These short-chain BAPs of varying natural and synthetic origin must be bioaccessible to be capable of being adsorbed systemically upon oral administration to show their full range of bioactivity. However, in general, in vitro and in vivo studies have shown that gastrointestinal digestion reduces BAPs bioactivity unless they are protected from degradation by encapsulation. This review gives a critical analysis of short-chain BAP encapsulation and performance with regard to the oral delivery route. In particular, it focuses on short-chain BAPs with antihypertensive and antidiabetic activity and encapsulation methods via nanoparticles and microparticles. Also addressed are the different wall materials used to form these particles and their associated payloads and release kinetics, along with the current challenges and a perspective of the future applications of these systems.
Collapse
Affiliation(s)
- Yoni Atma
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
- Department of Food Science and Technology, Universitas Trilogi, Jakarta, 12760, Indonesia
| | - Brent S Murray
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
5
|
Jaramillo-Granada AM, Li J, Flores Villarreal A, Lozano O, Ruiz-Suárez JC, Monje-Galvan V, Sierra-Valdez FJ. Modulation of Phospholipase A 2 Membrane Activity by Anti-inflammatory Drugs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7038-7048. [PMID: 38511880 DOI: 10.1021/acs.langmuir.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The phospholipase A2 (PLA2) superfamily consists of lipolytic enzymes that hydrolyze specific cell membrane phospholipids and have long been considered a central hub of biosynthetic pathways, where their lipid metabolites exert a variety of physiological roles. A misregulated PLA2 activity is associated with mainly inflammatory-derived pathologies and thus has shown relevant therapeutic potential. Many natural and synthetic anti-inflammatory drugs (AIDs) have been proposed as direct modulators of PLA2 activity. However, despite the specific chemical properties that these drugs share in common, little is known about the indirect modulation able to finely tune membrane structural changes at the precise lipid-binding site. Here, we use a novel experimental strategy based on differential scanning calorimetry to systematically study the structural properties of lipid membrane systems during PLA2 cleavage and under the influence of several AIDs. For a better understanding of the AIDs-membrane interaction, we present a comprehensive and comparative set of molecular dynamics (MD) simulations. Our thermodynamic results clearly demonstrate that PLA2 cleavage is hindered by those AIDs that significantly reduce the lipid membrane cooperativity, while the rest of the AIDs oppositely tend to catalyze PLA2 activity to different extents. On the other hand, our MD simulations support experimental results by providing atomistic details on the binding, insertion, and dynamics of each AID on a pure lipid system; the drug efficacy to impact membrane cooperativity is related to the lipid order perturbation. This work suggests a membrane-based mechanism of action for diverse AIDs against PLA2 activity and provides relevant clues that must be considered in its modulation.
Collapse
Affiliation(s)
- Angela M Jaramillo-Granada
- Centro de Investigación y de Estudios Avanzados-Monterrey, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León 66600, Mexico
| | - Jinhui Li
- Department of Chemical and Biological Engineering, State University of New York (SUNY) at Buffalo, Buffalo, New York 14260, United States
| | | | - Omar Lozano
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Nuevo León 64460, Mexico
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - J C Ruiz-Suárez
- Centro de Investigación y de Estudios Avanzados-Monterrey, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León 66600, Mexico
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, State University of New York (SUNY) at Buffalo, Buffalo, New York 14260, United States
| | | |
Collapse
|
6
|
Meleleo D, Avato P, Conforti F, Argentieri MP, Messina G, Cibelli G, Mallamaci R. Interaction of Quercetin, Cyanidin, and Their O-Glucosides with Planar Lipid Models: Implications for Their Biological Effects. MEMBRANES 2023; 13:600. [PMID: 37367804 DOI: 10.3390/membranes13060600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Flavonoids are specialized metabolites produced by plants, as free aglycones or as glycosylated derivatives, which are particularly endowed with a variety of beneficial health properties. The antioxidant, anti-inflammatory, antimicrobial, anticancer, antifungal, antiviral, anti-Alzheimer's, anti-obesity, antidiabetic, and antihypertensive effects of flavonoids are now known. These bioactive phytochemicals have been shown to act on different molecular targets in cells including the plasma membrane. Due to their polyhydroxylated structure, lipophilicity, and planar conformation, they can either bind at the bilayer interface or interact with the hydrophobic fatty acid tails of the membrane. The interaction of quercetin, cyanidin, and their O-glucosides with planar lipid membranes (PLMs) similar in composition to those of the intestine was monitored using an electrophysiological approach. The obtained results show that the tested flavonoids interact with PLM and form conductive units. The modality of interaction with the lipids of the bilayer and the alteration of the biophysical parameters of PLMs induced by the tested substances provided information on their location in the membrane, helping to elucidate the mechanism of action which underlies some pharmacological properties of flavonoids. To our knowledge, the interaction of quercetin, cyanidin, and their O-glucosides with PLM surrogates of the intestinal membrane has never been previously monitored.
Collapse
Affiliation(s)
- Daniela Meleleo
- Department of Science of Agriculture, Food, Natural Resources and Engineering, University of Foggia, 71122 Foggia, Italy
| | - Pinarosa Avato
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Pia Argentieri
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
7
|
Production of nanoparticles from resistant starch via a simple three-step physical treatment. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Eid J, Jraij A, Greige-Gerges H, Monticelli L. Effect of quercetin on lipid membrane rigidity: assessment by atomic force microscopy and molecular dynamics simulations. BBA ADVANCES 2021; 1:100018. [PMID: 37082004 PMCID: PMC10074961 DOI: 10.1016/j.bbadva.2021.100018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quercetin (3,3',4',5,7-pentahydroxyl-flavone) is a natural flavonoid with many valuable biological effects, but its solubility in water is low, posing major limitations in applications. Quercetin encapsulation in liposomes increases its bioavailability; the drug effect on liposome elastic properties is required for formulation development. Here, we quantify the effect of quercetin molecules on the rigidity of lipoid E80 liposomes using atomic force microscopy (AFM) and molecular dynamics (MD) simulations. AFM images show no effect of quercetin molecules on liposomes morphology and structure. However, AFM force curves suggest that quercetin softens lipid membranes; the Young modulus measured for liposomes encapsulating quercetin is smaller than that determined for blank liposomes. We then used MD simulations to interpret the effect of quercetin on membrane rigidity in terms of molecular interactions. The decrease in membrane rigidity was confirmed by the simulations, which also revealed that quercetin affects structural and dynamic properties: membrane thickness is decreased, acyl chains disorder is increased, and diffusion coefficients of lipid molecules are also increased. Such changes appear to be related to the preferential localization of quercetin within the membrane, near the interface between the hydrophobic core and polar head groups of the lipids.
Collapse
Affiliation(s)
- Jad Eid
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS & Univ. Claude Bernard Lyon I, UMR 5086, Lyon F-69007, France
| | - Alia Jraij
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon
- Corresponding authors.
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS & Univ. Claude Bernard Lyon I, UMR 5086, Lyon F-69007, France
- Corresponding authors.
| |
Collapse
|