1
|
Judd KD, Parsons SW, Majumder T, Dawlaty JM. Electrostatics, Hydration, and Chemical Equilibria at Charged Monolayers on Water. Chem Rev 2025; 125:2440-2473. [PMID: 39933097 DOI: 10.1021/acs.chemrev.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The chemistry and physics of soft matter interfaces, especially aqueous-organic interfaces, are centrally important to many areas of science and technology. Often, the thermodynamics, kinetics, and selectivity of reactions are modified at interfaces. Here, we review the electrostatics and hydration at charged monolayers on water and their influence on interfacial chemical equilibria. First, we provide an understanding of interfaces as a conceptual continuation of the solvation shell of small molecules, along with recent relevant experimental work. Then, we provide a summary of models for describing the electrostatics of aqueous interfaces. While we will discuss a range of new developments, our focus will be on systems where the electrostatics of the surface is controllable by the choice of relatively simple insoluble surfactants. New insights into the molecular structure of the double layer, with particular attention on the knowledge gained from spectroscopy will be reviewed. Our approach is to familiarize the reader with simple models, followed by discussion of models with further complexity for explaining interfacial phenomena. Experiments that test the limits of such models will also be discussed. Finally, we will provide an outlook on engineering the interfacial environment for tailored reactivity, along with the anticipated experimental advancements and potentials impacts.
Collapse
Affiliation(s)
- Kenneth D Judd
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| | - Sean W Parsons
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| | - Tirthick Majumder
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| | - Jahan M Dawlaty
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Korn P, Schwieger C, Gruhle K, Garamus VM, Meister A, Ihling C, Drescher S. Azide- and diazirine-modified membrane lipids: Physicochemistry and applicability to study peptide/lipid interactions via cross-linking/mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184004. [PMID: 35841926 DOI: 10.1016/j.bbamem.2022.184004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Although the incorporation of photo-activatable lipids into membranes potentially opens new avenues for studying interactions with peptides and proteins, the question of whether azide- or diazirine-modified lipids are suitable for such studies remains controversial. We have recently shown that diazirine-modified lipids can indeed form cross-links to membrane peptides after UV activation and that these cross-links can be precisely determined in their position by mass spectrometry (MS). However, we also observed an unexpected backfolding of the lipid's diazirine-containing stearoyl chain to the membrane interface challenging the potential application of this modified lipid for future cross-linking (XL)-MS studies of protein/lipid interactions. In this work, we compared an azide- (AzidoPC) and a diazirine-modified (DiazPC) membrane lipid regarding their self-assembly properties, their mixing behavior with saturated bilayer-forming phospholipids, and their reactivity upon UV activation using differential scanning calorimetry (DSC), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and MS. Mixtures of both modified lipids with DMPC were further used for photo-chemically induced XL experiments with a transmembrane model peptide (KLAW23) to elucidate similarities and differences between the azide and the diazirine moiety. We showed that both photo-reactive lipids can be used to study lipid/peptide and lipid/protein interactions. The AzidoPC proved easier to handle, whereas the DiazPC had fewer degradation products and a higher cross-linking yield. However, the problem of backfolding occurs in both lipids; thus, it seems to be a general phenomenon.
Collapse
Affiliation(s)
- Patricia Korn
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Christian Schwieger
- Institute of Chemistry, MLU Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Kai Gruhle
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany; Institute of Pharmacy-Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Vasil M Garamus
- Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem, MLU Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany; Institute of Biochemistry and Biotechnology-Physical Biotechnology, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Christian Ihling
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany; Center for Structural Mass Spectrometry, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Simon Drescher
- Institute of Pharmacy-Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany; Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Dorner J, Korn P, Gruhle K, Ramsbeck D, Garamus VM, Lilie H, Meister A, Schwieger C, Ihling C, Sinz A, Drescher S. A Diazirine-Modified Membrane Lipid to Study Peptide/Lipid Interactions - Chances and Challenges. Chemistry 2021; 27:14586-14593. [PMID: 34406694 PMCID: PMC8597076 DOI: 10.1002/chem.202102048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 01/19/2023]
Abstract
Although incorporation of photo‐activatable lipids into membranes potentially opens up novel avenues for investigating interactions with proteins, the question of whether diazirine‐modified lipids are suitable for such studies, remains under debate. Focusing on the potential for studying lipid/peptide interactions by cross‐linking mass spectrometry (XL‐MS), we developed a diazirine‐modified lipid (DiazPC), and examined its behaviour in membranes incorporating the model α‐helical peptide LAVA20. We observed an unexpected backfolding of the diazirine‐containing stearoyl chain of the lipid. This surprising behaviour challenges the potential application of DiazPC for future XL‐MS studies of peptide and protein/lipid interactions. The observations made for DiazPC most likely represent a general phenomenon for any type of membrane lipids with a polar moiety incorporated into the alkyl chain. Our finding is therefore of importance for future protein/lipid interaction studies relying on modified lipid probes.
Collapse
Affiliation(s)
- Julia Dorner
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Patricia Korn
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Kai Gruhle
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.,Institute of Pharmacy-Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Daniel Ramsbeck
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Weinbergweg 22, 06120, Halle (Saale), Germany.,Institute of Pharmacy, University Leipzig, Brüderstr. 34, 04103, Leipzig, Germany
| | - Vasil M Garamus
- Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Hauke Lilie
- Institute for Biochemistry and Biotechnology-Technical Biochemistry, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Annette Meister
- Institute of Biochemistry and Biotechnology-Physical Biotechnology Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany.,Interdisciplinary Research Center HALOmem, MLU Halle-Wittenberg Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Christian Schwieger
- Interdisciplinary Research Center HALOmem, MLU Halle-Wittenberg Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Christian Ihling
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Andrea Sinz
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Simon Drescher
- Institute of Pharmacy-Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany.,Phospholipid Research Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Hoffmann M, Drescher S, Schwieger C, Hinderberger D. Influence of a single ether bond on assembly, orientation, and miscibility of phosphocholine lipids at the air-water interface. Phys Chem Chem Phys 2021; 23:5325-5339. [PMID: 33634294 DOI: 10.1039/d0cp06520j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How does a small change in the structure of a phospholipid affect its supramolecular assembly? In aqueous suspensions, the substitution of one ester linkage in DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) by an ether linkage alters its phase behaviour completely. To unravel the effect of replacing a phospholipid's ester linkage by an ether linkage in lipid monolayers, we characterized pure monolayers of the model lipid DPPC and its sn-2 ether analogue PHPC (1-palmitoyl-2-O-hexadecyl-sn-glycero-3-phosphocholine) as well as mixtures of both by measurements of surface pressure-molecular area (π-Amol) isotherms. In addition, we used infrared reflection absorption spectroscopy (IRRAS) to study lipid condensation, lipid chain orientation, headgroup hydration, and lipid miscibility in all samples. Mixed monolayers consisting of DPPC and PHPC were studied further using epifluorescence microscopy. Our results indicate a strong influence of the sn-2 ether linkage on headgroup hydration and ordering effects in the regions of the apolar chains and the headgroups. Both effects could originate from changes in glycerol conformation. Furthermore, we observed a second plateau in the π-Amol isotherms of DPPC/PHPC mixtures and analysis of the mixed π-Amol isotherms reveals a non-ideal mixing behaviour of both lipids which may be caused by conformational differences in their headgroups.
Collapse
Affiliation(s)
- Matthias Hoffmann
- Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany. and Interdisciplinary Research Center HALOmem, MLU Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Simon Drescher
- Institute of Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany and Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Christian Schwieger
- Interdisciplinary Research Center HALOmem, MLU Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany. and Interdisciplinary Research Center HALOmem, MLU Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| |
Collapse
|