1
|
Skrzyniarz K, Takvor-Mena S, Lach K, Łysek-Gładysińska M, Barrios-Gumiel Ó, Cano J, Ciepluch K. Molecular mechanism of action of imidazolium carbosilane dendrimers on the outer bacterial membrane - From membrane damage to permeability to antimicrobial endolysin. J Colloid Interface Sci 2024; 665:814-824. [PMID: 38555749 DOI: 10.1016/j.jcis.2024.03.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The outer bacterial membrane of drug-resistant bacteria is a significant barrier to many antimicrobials. Therefore, the development of new antibacterials primarily focuses on damaging the outer bacterial membrane of Gram-negative bacteria. Among many membrane-disrupting substances, the most promising are cationic dendritic systems. However, the mode of action may vary among different strains due to variations in the lipid compositions of the membrane. Here, we investigated the interaction of two types of cationic imidazolium carbosilane dendrimers: one with a single cationic group (methyl imidazolium) and the other with the same cationic group but attached to a functional group (a pendant pyridyl moiety), capable of establishing interactions with membranes through H-bonding or ion-dipole electrostatic interactions. We used different models of the outer membrane of Gram-negative bacteria - Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Additionally, we assessed the combined effect of the dendrimers and the antibacterial endolysin on P. aeruginosa. Our results show that the mechanism of action depends on the type of dendrimer and the lipid composition of the membrane. We also demonstrate that the alteration of membrane fluidity and permeability to endolysin by the methyl imidazolium and pyridyl imidazolium dendrimers may play a more significant role in antimicrobial activity compared to membrane damage caused by positively charged dendrimers.
Collapse
Affiliation(s)
- Kinga Skrzyniarz
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-640 Kielce, Poland
| | - Samuel Takvor-Mena
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, 28805 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research, IRYCIS, Ctra. de Colmenar Viejo, Km. 9, 28034 Madrid, Spain
| | - Karolina Lach
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-640 Kielce, Poland
| | - Małgorzata Łysek-Gładysińska
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-640 Kielce, Poland
| | - Óscar Barrios-Gumiel
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, 28805 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research, IRYCIS, Ctra. de Colmenar Viejo, Km. 9, 28034 Madrid, Spain
| | - Jesús Cano
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, 28805 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research, IRYCIS, Ctra. de Colmenar Viejo, Km. 9, 28034 Madrid, Spain
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-640 Kielce, Poland.
| |
Collapse
|
2
|
Fu Y, Sun J, Wang Y, Li W. Glucose oxidase and metal catalysts combined tumor synergistic therapy: mechanism, advance and nanodelivery system. J Nanobiotechnology 2023; 21:400. [PMID: 37907972 PMCID: PMC10617118 DOI: 10.1186/s12951-023-02158-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer has always posed a significant threat to human health, prompting extensive research into new treatment strategies due to the limitations of traditional therapies. Starvation therapy (ST) has garnered considerable attention by targeting the primary energy source, glucose, utilized by cancer cells for proliferation. Glucose oxidase (GOx), a catalyst facilitating glucose consumption, has emerged as a critical therapeutic agent for ST. However, mono ST alone struggles to completely suppress tumor growth, necessitating the development of synergistic therapy approaches. Metal catalysts possess enzyme-like functions and can serve as carriers, capable of combining with GOx to achieve diverse tumor treatments. However, ensuring enzyme activity preservation in normal tissue and activation specifically within tumors presents a crucial challenge. Nanodelivery systems offer the potential to enhance therapy effectiveness by improving the stability of therapeutic agents and enabling controlled release. This review primarily focuses on recent advances in the mechanism of GOx combined with metal catalysts for synergistic tumor therapy. Furthermore, it discusses various nanoparticles (NPs) constructs designed for synergistic therapy in different carrier categories. Finally, this review provides a summary of GOx-metal catalyst-based NPs (G-M) and offers insights into the challenges associated with G-M therapy, delivery design, and oxygen (O2) supply.
Collapse
Affiliation(s)
- Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Jialin Sun
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Biological Science and Technology Department, Heilongjiang Minzu College, Harbin, Heilongjiang Province, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| |
Collapse
|
3
|
Pricl S. The Spicy Science of Dendrimers in the Realm of Cancer Nanomedicine: A Report from the COST Action CA17140 Nano2Clinic. Pharmaceutics 2023; 15:2013. [PMID: 37514199 PMCID: PMC10384593 DOI: 10.3390/pharmaceutics15072013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
COST Action CA17140 Cancer Nanomedicine-from the bench to the bedside (Nano2Clinic,) is the first, pan-European interdisciplinary network of representatives from academic institutions and small and medium enterprises including clinical research organizations (CROs) devoted to the development of nanosystems carrying anticancer drugs from their initial design, preclinical testing of efficacy, pharmacokinetics and toxicity to the preparation of detailed protocols needed for the first phase of their clinical studies. By promoting scientific exchanges, technological implementation, and innovative solutions, the action aims at providing a timely instrument to rationalize and focus research efforts at the European level in dealing with the grand challenge of nanomedicine translation in cancer, one of the major and societal-burdening human pathologies. Within CA17140, dendrimers in all their forms (from covalent to self-assembling dendrons) play a vital role as powerful nanotheranostic agents in oncology; therefore, the purpose of this review work is to gather and summarize the major results in the field stemming from collaborative efforts in the framework of the European Nano2Clinic COST Action.
Collapse
Affiliation(s)
- Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture (DEA), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
4
|
Carloni R, Ottaviani MF, Ficker M, Christensen JB. Interactions of Functionalized PAMAM Dendrimers with Model Cell Membranes Studied via Spin-Labeling Technique. J Phys Chem B 2022; 126:9686-9694. [PMID: 36354364 DOI: 10.1021/acs.jpcb.2c05123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Polyamidoamine (PAMAM) dendrimers are exploited as drug carriers in various biomedical research fields, especially cancer therapy. The present study analyzes the interactions occurring between differently functionalized PAMAM dendrimers, namely, amine, acetamide, and 3-methoxy-carbonyl-5-pyrrolidonyl ("pyrrolidone"), and model membranes, namely, sodium dodecyl sulfate (SDS), sodium hexadecylsulfate (SHS) micelles, and egg-lecithin liposomes. For this purpose, the dendrimers were spin-labeled with the 3-carbamoyl-PROXYL radical. 1H-NMR spectra allowed the verification not only that labeling was successful but also that acetamide and (even more so) pyrrolidone functions shield the proton signals from the influence of the neighboring nitroxide groups. The computer-aided analysis of the electron paramagnetic resonance (EPR) spectra showed that the dendrimers with the acetamide function largely (60%) entered the SDS-micelles interface, while the amino-dendrimer electrostatically interacted with both the SDS and SHS surface forming dendrimer aggregates in solution. The pyrrolidone-dendrimers showed an intermediate behavior between those with the amino and acetamide functions. The acetamide- and pyrrolidone-dendrimers weakly interacted with the lecithin liposome surface, with a synergy between hydrophilic and hydrophobic interactions. Conversely, liposomes/amino-dendrimers interactions were quite strong and led to dendrimer aggregation at the liposome surface in solution. This information showed that acetamide- and pyrrolidone-dendrimers may be used as good alternatives to amino-dendrimers for drug delivery.
Collapse
Affiliation(s)
- Riccardo Carloni
- Knight Cancer Institute, Cancer Early Detection Advanced Research Center (CEDAR), Oregon Health and Science University, Portland, Oregon 97210, United States.,Department of Pure and Applied Sciences, University of Urbino, Urbino 61029, Italy
| | | | - Mario Ficker
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Jørn B Christensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
5
|
Canonico B, Cangiotti M, Montanari M, Papa S, Fusi V, Giorgi L, Ciacci C, Ottaviani MF, Staneva D, Grabchev I. Characterization of a fluorescent 1,8-naphthalimide-functionalized PAMAM dendrimer and its Cu(ii) complexes as cytotoxic drugs: EPR and biological studies in myeloid tumor cells. Biol Chem 2021; 403:345-360. [PMID: 34883001 DOI: 10.1515/hsz-2021-0388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023]
Abstract
The activity and interacting ability of a polyamidoamine (PAMAM) dendrimer modified with 4-N-methylpiperazine-1,8-naphthalimide units (termed D) and complexed by Cu(ii) ions, towards healthy and cancer cells were studied. Comparative electron paramagnetic resonance (EPR) studies of the Cu(ii)-D complex are presented: coordination mode, chemical structure, flexibility and stability of these complexes, in the absence and presence of myeloid cancer cells and peripheral blood mononuclear cells (PBMC). The interactions of Cu(ii) ions in the biological media at different equilibrium times were studied, highlighting different stability and interacting conditions with the cells. Furthermore, flow cytometry and confocal analysis, trace the peculiar properties of the dendrimers in PBMC and U937 cells. Indeed, a new probe (Fly) was used as a potential fluorescent tool for biological imaging of Cu(ii). The study highlights that dendrimer and, mainly, the Cu(ii) metallodendrimer are cytotoxic agents for the cells, specifically for U937 tumor cells, inducing mitochondrial dysfunction, ROS increase and lysosome involvement. The metallodendrimer shows antitumor selectivity, fewer affecting healthy PBMC, inducing a massive apoptotic cell death on U937 cells, in line with the high stability of this complex, as verified by EPR studies. The results underline the potentiality of this metallodendrimer to be used as anticancer drug.
Collapse
Affiliation(s)
- Barbara Canonico
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | - Michela Cangiotti
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, I-61029 Urbino, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, I-61029 Urbino, Italy
| | - Luca Giorgi
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, I-61029 Urbino, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | | | - Desislava Staneva
- University of Chemical Technology and Metallurgy, BG-1756 Sofia, Bulgaria
| | - Ivo Grabchev
- Sofia University "St. Kliment Ohridski", Faculty of Medicine, BG-1407 Sofia, Bulgaria
| |
Collapse
|
6
|
Agrahari AK, Jaiswal MK, Yadav MS, Tiwari VK. CuAAC mediated synthesis of cyclen cored glycodendrimers of high sugar tethers at low generation. Carbohydr Res 2021; 508:108403. [PMID: 34329845 DOI: 10.1016/j.carres.2021.108403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Glycodendrimers are receiving considerable attention to mimic a number of imperative features of cell surface glycoconjugate and acquired excellent relevance to a wide domain of investigations including medicine, pharmaceutics, catalysis, nanotechnology, carbohydrate-protein interaction, and moreover in drug delivery systems. Toward this end, an expeditious, modular, and regioselective triazole-forming CuAAC click approach along with double stage convergent synthetic method was chosen to develop a variety of novel chlorine-containing cyclen cored glycodendrimers of high sugar tethers at low generation of promising therapeutic potential. We developed a novel chlorine-containing hypercore unit with 12 alkynyl functionality originated from cyclen scaffold which was confirmed by its single crystal X-ray data analysis. Further, the modular CuAAC technique was utilized to produce a variety of novel 12-sugar coated (G0) glycodendrimers 12-15 adorn with β-Glc-, β-Man-, β-Gal-, β-Lac, along with 36-galactose coated (G1) glycodendrimer 18 in good-to-high yield. The structures of the developed glycodendrimer architectures have been well elucidated by extensive spectral analysis including NMR (1H & 13CNMR), HRMS, MALDI-TOF MS, UV-Vis, IR, and SEC (Size Exclusion Chromatogram) data.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|