1
|
Xu X, Yang Y, Zhou Y, Xiao K, Szymanowski JES, Sigmon GE, Burns PC, Liu T. Critical Conditions Regulating the Gelation in Macroionic Cluster Solutions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308902. [PMID: 38430533 PMCID: PMC11095157 DOI: 10.1002/advs.202308902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Indexed: 03/04/2024]
Abstract
The critical gelation conditions observed in dilute aqueous solutions of multiple nanoscale uranyl peroxide molecular clusters are reported, in the presence of multivalent cations. This gelation is dominantly driven by counterion-mediated attraction. The gelation areas in the corresponding phase diagrams all appear in similar locations, with a characteristic triangle shape outlining three critical boundary conditions, corresponding to the critical cluster concentration, cation/cluster ratio, and the degree of counterion association with increasing cluster concentration. These interesting phrasal observations reveal general conditions for gelation driven by electrostatic interactions in hydrophilic macroionic solutions.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Yuqing Yang
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Yifan Zhou
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Kexing Xiao
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Jennifer E. S. Szymanowski
- Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameIN46556USA
| | - Ginger E. Sigmon
- Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameIN46556USA
| | - Peter C. Burns
- Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameIN46556USA
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIN46556USA
| | - Tianbo Liu
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| |
Collapse
|
2
|
Xue B, Lai Y, Liu Y, Li M, Li X, Yin P. The Counterion-Mediated Controllable Coacervation of Nano-Ions with Polyelectrolytes. J Colloid Interface Sci 2023; 641:853-860. [PMID: 36966574 DOI: 10.1016/j.jcis.2023.03.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023]
Abstract
Nano-ions can complex with polyelectrolytes for coacervates with hierarchical structures; however, the rational design of functional coacervations is still rare due to the poor understanding of their structure-property relationship from their complex interaction. Herein, 1 nm anionic metal oxide clusters, PW12O403-, with well-defined, mono-disperse structures are applied to complex with cationic polyelectrolyte and the system shows tunable coacervation via the alternation of counterions (H+ and Na+) of PW12O403-. Suggested from Fourier transform infrared spectroscopy (FT-IR) and isothermal titration studies, the interaction between PW12O403- and cationic polyelectrolytes can be modulated by the bridging effect of counterions via hydrogen bonding or ion-dipole interaction to carbonyl groups of polyelectrolytes. The condensed structures of the complexed coacervates are explored by small angle X-ray and neutron scattering techniques, respectively. The coacervate with H+ as counterions shows both crystallized and discrete PW12O403- clusters, with a loose polymer-cluster network in comparison to the system of Na+ which shows a dense packing structure with aggregated nano-ions filling the meshes of polyelectrolyte networks. The bridging effect of counterions helps understand the super-chaotropic effect observed in nano-ion system and provides avenues for the design of metal oxide cluster-based functional coacervates.
Collapse
|
3
|
Rahman T, Petrus E, Segado M, Martin NP, Palys LN, Rambaran MA, Ohlin CA, Bo C, Nyman M. Predicting the Solubility of Inorganic Ion Pairs in Water. Angew Chem Int Ed Engl 2022; 61:e202117839. [DOI: 10.1002/anie.202117839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Tasnim Rahman
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| | - Enric Petrus
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Mireia Segado
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Nicolas P. Martin
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| | - Lauren N. Palys
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| | - Mark A. Rambaran
- Department of Chemistry Faculty of Science and Technology Umeå University 901 87 Umeå Sweden
| | - C. Andre Ohlin
- Department of Chemistry Faculty of Science and Technology Umeå University 901 87 Umeå Sweden
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili (URV) Marcel lí Domingo s/n 43007 Tarragona Spain
| | - May Nyman
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| |
Collapse
|
4
|
Rahman T, Petrus E, Segado M, Martin N, Palys L, Rambaran MA, Ohlin CA, Bo C, Nyman M. Predicting solubility of ion pairs in aqueous inorganic chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tasnim Rahman
- Oregon State University Department of Chemistry UNITED STATES
| | - Enric Petrus
- ICIQ: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - Mireia Segado
- ICIQ: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - Nicolas Martin
- Oregon State University Department of Chemistry chemistry UNITED STATES
| | - Lauren Palys
- Oregon State University Department of Chemistry Chemistry UNITED STATES
| | | | | | - Carles Bo
- ICIQ: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - May Nyman
- Oregon State University Department of Chemistry 153 Gilbert Hall 97331-4003 Corvallis UNITED STATES
| |
Collapse
|
5
|
Weinhold F. Anti-Electrostatic Pi-Hole Bonding: How Covalency Conquers Coulombics. Molecules 2022; 27:377. [PMID: 35056689 PMCID: PMC8780338 DOI: 10.3390/molecules27020377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
Intermolecular bonding attraction at π-bonded centers is often described as "electrostatically driven" and given quasi-classical rationalization in terms of a "pi hole" depletion region in the electrostatic potential. However, we demonstrate here that such bonding attraction also occurs between closed-shell ions of like charge, thereby yielding locally stable complexes that sharply violate classical electrostatic expectations. Standard DFT and MP2 computational methods are employed to investigate complexation of simple pi-bonded diatomic anions (BO-, CN-) with simple atomic anions (H-, F-) or with one another. Such "anti-electrostatic" anion-anion attractions are shown to lead to robust metastable binding wells (ranging up to 20-30 kcal/mol at DFT level, or still deeper at dynamically correlated MP2 level) that are shielded by broad predissociation barriers (ranging up to 1.5 Å width) from long-range ionic dissociation. Like-charge attraction at pi-centers thereby provides additional evidence for the dominance of 3-center/4-electron (3c/4e) nD-π*AX interactions that are fully analogous to the nD-σ*AH interactions of H-bonding. Using standard keyword options of natural bond orbital (NBO) analysis, we demonstrate that both n-σ* (sigma hole) and n-π* (pi hole) interactions represent simple variants of the essential resonance-type donor-acceptor (Bürgi-Dunitz-type) attraction that apparently underlies all intermolecular association phenomena of chemical interest. We further demonstrate that "deletion" of such π*-based donor-acceptor interaction obliterates the characteristic Bürgi-Dunitz signatures of pi-hole interactions, thereby establishing the unique cause/effect relationship to short-range covalency ("charge transfer") rather than envisioned Coulombic properties of unperturbed monomers.
Collapse
Affiliation(s)
- Frank Weinhold
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
6
|
Liu Z, Qian K, Liu T, Tsige M. Recent advancements in understanding the self-assembly of macroions in solution via molecular modeling. Chem Commun (Camb) 2022; 58:12151-12159. [DOI: 10.1039/d2cc04535d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macroions fill the gap between simple ions and colloids in size but display a completely different self-assembly behavior in solution.
Collapse
Affiliation(s)
- Zhuonan Liu
- School of Polymer Science & Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Kun Qian
- School of Polymer Science & Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Tianbo Liu
- School of Polymer Science & Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Mesfin Tsige
- School of Polymer Science & Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
7
|
Li J, Fernandez-Alvarez R, Tošner Z, Kozlík P, Štěpánek M, Zhigunov A, Urbanová M, Brus J, Uchman M, Matějíček P. Polynorbornene-Based Polyelectrolytes with Covalently Attached Metallacarboranes: Synthesis, Characterization, and Lithium-Ion Mobility. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jianwei Li
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Roberto Fernandez-Alvarez
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Zdeněk Tošner
- NMR Laboratory, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czechia
| | - Martina Urbanová
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czechia
| | - Jiří Brus
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czechia
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Pavel Matějíček
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| |
Collapse
|
8
|
Falaise C, Khlifi S, Bauduin P, Schmid P, Shepard W, Ivanov AA, Sokolov MN, Shestopalov MA, Abramov PA, Cordier S, Marrot J, Haouas M, Cadot E. “Host in Host” Supramolecular Core–Shell Type Systems Based on Giant Ring‐Shaped Polyoxometalates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Clément Falaise
- Institut Lavoisier de Versailles CNRS, UVSQ, Université Paris-Saclay Versailles France
| | - Soumaya Khlifi
- Institut Lavoisier de Versailles CNRS, UVSQ, Université Paris-Saclay Versailles France
| | - Pierre Bauduin
- ICSM, CEA CNRS ENSCM Université Montpellier 34199 Marcoule France
| | - Philipp Schmid
- ICSM, CEA CNRS ENSCM Université Montpellier 34199 Marcoule France
| | - William Shepard
- Synchrotron SOLEIL L'Orme des Merisiers Saint-Aubain BP 48 91192 Gif-sur-Yvette, CEDEX France
| | - Anton A. Ivanov
- Nikolaev Institute of Inorganic Chemistry SB RAS 630090 Novosibirsk Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS 630090 Novosibirsk Russia
| | | | - Pavel A. Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS 630090 Novosibirsk Russia
- South Ural State University, Prospekt Lenina, 76 454080 Chelyabinsk Russia
| | - Stéphane Cordier
- CNRS Institut des Sciences Chimiques de Rennes ISCR—UMR 6226 Univ Rennes 35000 Rennes France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles CNRS, UVSQ, Université Paris-Saclay Versailles France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles CNRS, UVSQ, Université Paris-Saclay Versailles France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles CNRS, UVSQ, Université Paris-Saclay Versailles France
| |
Collapse
|
9
|
Falaise C, Khlifi S, Bauduin P, Schmid P, Shepard W, Ivanov AA, Sokolov MN, Shestopalov MA, Abramov PA, Cordier S, Marrot J, Haouas M, Cadot E. "Host in Host" Supramolecular Core-Shell Type Systems Based on Giant Ring-Shaped Polyoxometalates. Angew Chem Int Ed Engl 2021; 60:14146-14153. [PMID: 33724635 DOI: 10.1002/anie.202102507] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 11/08/2022]
Abstract
Herein, we show how the chaotropic effect arising from reduced molybdate ions in acidified aqueous solution is able to amplify drastically weak supramolecular interactions. Time-resolved Small Angle X-ray Scattering (SAXS) analysis suggests that molybdenum-blue oligomeric species form huge aggregates in the presence of γ-cyclodextrin (γ-CD) which results in the fast formation of nanoscopic {Mo154 }-based host-guest species, while X-ray diffraction analysis reveals that the ending-point of the scenario results in an unprecedented three-component well-ordered core-shell-like motif. A similar arrangement was found by using preformed hexarhenium chalcogenide-type cluster [Re6 Te8 (CN)6 ]4- as exogenous guest. This seminal work brings better understanding of the self-assembly processes in general and gives new opportunities for practical applications in the design of complex multicomponent materials via the simplicity of the non-covalent chemistry.
Collapse
Affiliation(s)
- Clément Falaise
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Soumaya Khlifi
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Pierre Bauduin
- ICSM, CEA, CNRS, ENSCM, Université Montpellier, 34199, Marcoule, France
| | - Philipp Schmid
- ICSM, CEA, CNRS, ENSCM, Université Montpellier, 34199, Marcoule, France
| | - William Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubain BP 48, 91192, Gif-sur-Yvette, CEDEX, France
| | - Anton A Ivanov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 630090, Novosibirsk, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 630090, Novosibirsk, Russia
| | | | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 630090, Novosibirsk, Russia.,South Ural State University, Prospekt Lenina, 76, 454080, Chelyabinsk, Russia
| | - Stéphane Cordier
- CNRS, Institut des Sciences Chimiques de Rennes, ISCR-UMR 6226, Univ Rennes, 35000, Rennes, France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| |
Collapse
|