1
|
Botnar AA, Novikov OP, Korepanov OA, Muraveva EA, Kozodaev DA, Novikov AS, Nosonovsky M, Skorb EV, Muravev AA. Crystallization Control of Anionic Thiacalixarenes on Silicon Surface Coated with Cationic Poly(ethyleneimine). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24634-24643. [PMID: 39513554 DOI: 10.1021/acs.langmuir.4c03488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Surface modification of solid substrates with organic molecules and polyelectrolytes is a promising strategy toward advanced soft materials due to the control of molecular arrangement and supramolecular organization; however, understanding the nature of interactions within the assembly is challenging. Here a facile approach to the control of the architecture of calixarene macrocycles on soft surfaces is presented through the interplay of weak interactions involving a solid silicon substrate, a cationic polyelectrolyte layer, and anionic sulfonatothiacalix[4]arene (STCA). Topological analysis of atomic force microscopy (AFM) images of STCA on silicon, as well as silicon wafers modified with neutral polyethylenimine (PEI) and cationic PEI-H+, indicates different surface morphology and assembly behavior of STCA on such substrates. Drop-casting a calixarene solution onto silicon induces the formation of chaotically oriented needle crystals. When there is globular PEI, a nucleation point for the STCA crystals is formed on the polyelectrolyte surface, which grows into rosette structures. In contrast, protonated PEI with a chain-like structure alters the self-organization of STCA on silicon surfaces, leading to a dense uniform fiber-like network. Density functional theory modeling of the system components' self-assembly reveals thermodynamically favorable face-to-face antiparallel aggregation of STCA monomers and contribution of H-bonding into PEI(PEI-H+)-STCA and Si-STCA association.
Collapse
Affiliation(s)
- Anna A Botnar
- Infochemistry Scientific Center, ITMO University, Saint Petersburg 191002, Russia
| | - Oleg P Novikov
- Infochemistry Scientific Center, ITMO University, Saint Petersburg 191002, Russia
| | | | - Ekaterina A Muraveva
- Infochemistry Scientific Center, ITMO University, Saint Petersburg 191002, Russia
| | | | - Alexander S Novikov
- Infochemistry Scientific Center, ITMO University, Saint Petersburg 191002, Russia
| | - Michael Nosonovsky
- Infochemistry Scientific Center, ITMO University, Saint Petersburg 191002, Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, Saint Petersburg 191002, Russia
| | - Anton A Muravev
- Infochemistry Scientific Center, ITMO University, Saint Petersburg 191002, Russia
| |
Collapse
|
2
|
Shi TH, Akine S, Ohtani S, Kato K, Ogoshi T. Friedel-Crafts Acylation for Accessing Multi-Bridge-Functionalized Large Pillar[n]arenes. Angew Chem Int Ed Engl 2024; 63:e202318268. [PMID: 38108597 DOI: 10.1002/anie.202318268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Pillar[n]arenes can be constructed using a Friedel-Crafts alkylation process. However, due to the reversible nature of the alkylation, mixture of large pillar[n]arenes (n≥7) are obtained as minor products, and thus laborious purification are necessary to isolate the larger pillar[n]arenes. Moreover, inert methylene bridges are introduced during the alkylation process, and the multi-functionalization of the bridges has never been investigated. Herein, an irreversible Friedel-Crafts acylation is used to prepare pillar[n]arenes. Due to the irreversible nature of the acylation, the reaction of precursors bearing carboxylic acids and electron-rich arene rings results in a size-exclusive formation of pillar[n]arenes, in which the ring-size is determined by the precursor length. Because of this size-selective formation, laborious separation of undesired macrocycles is not necessary. Moreover, the bridges of pillar[n]arenes are selectively installed with reactive carbonyl groups using the acylation method, whose positions are determined by the precursor used. The carbonyl bridges can be easily converted into versatile functional groups, leading to various laterally modified pillar[n]arenes, which cannot be accessed by the alkylation strategy.
Collapse
Affiliation(s)
- Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
| | - Shigehisa Akine
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Ishikawa, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Ishikawa, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Ishikawa, Japan
| |
Collapse
|
3
|
Abstract
I review experimental developments in the growth and application of surface-grafted weak polyelectrolytes (brushes), concentrating on their surface, tribological, and adhesive and bioadhesive properties, and their role as actuators.
Collapse
Affiliation(s)
- Mark Geoghegan
- School of Engineering, Newcastle University, Merz Court, Newcastle-upon-Tyne NE1 7RU, UK.
| |
Collapse
|
4
|
Dai S, Li M, Yan H, Zhu H, Hu H, Zhang Y, Cheng G, Yuan N, Ding J. Self-Healing Silicone Elastomer with Stable and High Adhesion in Harsh Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13696-13702. [PMID: 34758614 DOI: 10.1021/acs.langmuir.1c02356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Adhesive and self-healing elastomers are urgently needed for their convenience and intelligence in biological medicine, flexible electronics, intelligent residential systems, etc. However, their inevitable use in harsh environments results in further enhancement requirements of the structure and performance of adhesive and self-healing elastomers. Herein, a novel self-healing and high-adhesion silicone elastomer was designed by the synergistic effect of multiple dynamic bonds. It revealed excellent stretchability (368%) and self-healing properties at room temperature (98.1%, 5 h) and in a water environment (96.4% for 5 h). Meanwhile, the resultant silicone elastomer exhibited high adhesion to metal and nonmetal and showed stable adhesion in harsh environments, such as under acidic (pH 1) and alkaline (pH 12) environments, salt water, petroleum ether, water, etc. Furthermore, it was applied as a shatter-proof protective layer and a rust-proof coating, proving its significant potential in intelligent residential system applications.
Collapse
Affiliation(s)
- Shengping Dai
- Institute of Intelligent flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Meng Li
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Hao Yan
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Hao Zhu
- Institute of Intelligent flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hongwei Hu
- Institute of Intelligent flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yixing Zhang
- Institute of Intelligent flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Guanggui Cheng
- Institute of Intelligent flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ningyi Yuan
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jianning Ding
- Institute of Intelligent flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|