1
|
Sivagnanam S, Nayak S, Halder A, Mukherjee O, Saha A, Das P. Sticky tubes co-assembled by functionalised diphenylalanine and polydopamine nanoparticles form biocompatible antifouling coating. RSC Adv 2025; 15:3672-3685. [PMID: 39911550 PMCID: PMC11795260 DOI: 10.1039/d4ra08342c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
The persistent challenge of biofouling, driven by the accumulation of microorganisms and biological residues on surfaces, undermines operational efficiency and safety across multiple industries. Functionalized peptide based biocompatible and supramolecular coating can provide a substantial solution to this crucial issue. This present study describes the formation of polydopamine-comprised sticky tubes through the co-assembly of an antifouling peptide P1 (FF-PFB) and Polydopamine Nanoparticles (PDA NPs) with an adhesive catechol moiety. To overcome the synthetic complications associated with the attachment of adhesive l-DOPA or dopamine with antifouling peptides, we have employed a simple co-assembly strategy. These co-assembled sticky tubes form a stable, biocompatible coating on desired surfaces (glass and aluminium) and resist fouling. The design consists of a diphenylalanine-based antifouling peptide covalently coupled with pentafluoro benzaldehyde (PFB), which could self-assemble into a stable functional coating through the adhesive catechol moiety of PDA NPs. This functional coating effectively resists bacterial and protein adhesion. These sticky tubes coated desired surfaces (glass and aluminium) exhibit excellent antifouling activity against both tested Gram (+)ve (S. aureus) and Gram (-)ve (E. coli) bacterial strains. More importantly, this simple co-assembly and drop-coating method has significant promise, primarily attributed to its simplicity of operation, which reduces production costs and expands the potential for widespread commercialization. This study not only contributes to the fundamental understanding of the antifouling process but also offers a practical and sustainable solution to the challenges caused by biofouling. Our findings, achieved through the simple and effective co-assembly strategy with two different functional components, pave the way for developing promising antifouling materials with broad applications in industries where effective biofouling resistance is crucial.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology SRM Nagar, Potheri, Kattankulathur Tamil Nadu-603203 India
| | - Suman Nayak
- Department of Chemistry, SRM Institute of Science and Technology SRM Nagar, Potheri, Kattankulathur Tamil Nadu-603203 India
| | - Arpita Halder
- Department of Biotechnology, National Institute of Technology Durgapur West Bengal 713209 India
| | - Oindrilla Mukherjee
- Department of Biotechnology, National Institute of Technology Durgapur West Bengal 713209 India
| | - Abhijit Saha
- Department of Chemistry, SRM Institute of Science and Technology SRM Nagar, Potheri, Kattankulathur Tamil Nadu-603203 India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology SRM Nagar, Potheri, Kattankulathur Tamil Nadu-603203 India
| |
Collapse
|
2
|
Yokokura TJ, Duan C, Ding EA, Kumar S, Wang R. Effects of Ionic Strength on the Morphology, Scattering, and Mechanical Response of Neurofilament-Derived Protein Brushes. Biomacromolecules 2024; 25:328-337. [PMID: 38052005 PMCID: PMC10872360 DOI: 10.1021/acs.biomac.3c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Protein brushes not only play a key role in the functionality of neurofilaments but also have wide applications in biomedical materials. Here, we investigate the effect of ionic strength on the morphology of protein brushes using continuous-space self-consistent field theory. A coarse-grained multiblock charged macromolecular model is developed to capture the chemical identity of amino acid sequences. For neurofilament heavy (NFH) brushes at pH 2.4, we predict three morphological regimes: swollen brushes, condensed brushes, and coexisting brushes, which consist of both a dense inner layer and a diffuse outer layer. The brush height predicted by our theory is in good agreement with the experimental data for a wide range of ionic strengths. The dramatic height decrease is a result of the electrostatic screening-induced transition from the overlapping state to the isolated state of the coexisting brushes. We also studied the evolution of the scattering and mechanical responses accompanying the morphological change. The oscillation in the reflectivity spectra characterizes the existence and microstructure of the inner condensed layer, whereas the shoulder in the force spectra signifies a swollen morphology.
Collapse
Affiliation(s)
- Takashi J Yokokura
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Chao Duan
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Erika A Ding
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Rui Wang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Hu X, Liao M, Ding K, Wang J, Xu H, Tao K, Zhou F, Lu JR. Neutron reflection and scattering in characterising peptide assemblies. Adv Colloid Interface Sci 2023; 322:103033. [PMID: 37931380 DOI: 10.1016/j.cis.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Self-assemblies of de novo designed short peptides at interface and in bulk solution provide potential platforms for developing applications in many medical and technological areas. However, characterising how bioinspired supramolecular nanostructures evolve with dynamic self-assembling processes and respond to different stimuli remains challenging. Neutron scattering technologies including small angle neutron scattering (SANS) and neutron reflection (NR) can be advantageous and complementary to other state-of-the-art techniques in tracing structural changes under different conditions. With more neutron sources now available, SANS and NR are becoming increasingly popular in studying self-assembling processes of diverse peptide and protein systems, but the difficulty in experimental manipulation and data analysis can deter beginners. This review will introduce the basic theory, general experimental setup and data analysis of SANS and NR, followed by provision of their applications in characterising interfacial and solution self-assemblies of representative peptides and proteins. SANS and NR are remarkably effective in determining the morphological features self-assembled short peptides, especially size and shape transitions as a result of either sequence changes or in response to environmental stimuli, demonstrating the unique capability of NR and SANS in unravelling the interactive processes. These examples highlight the potential of NR and SANS in supporting the development of novel short peptides and proteins as biopharmaceutical candidates in the fight against many diseases and infections that share common features of membrane interactive processes.
Collapse
Affiliation(s)
- Xuzhi Hu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.; Lanzhou Institute of Chemical Physics, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Mingrui Liao
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ke Ding
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
| | - Feng Zhou
- Lanzhou Institute of Chemical Physics, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK..
| |
Collapse
|
4
|
Yu H, Qin L, Zhou J. Effect of Oil Polarity on the Protein Adsorption at Oil-Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10701-10710. [PMID: 37470337 DOI: 10.1021/acs.langmuir.3c01541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Protein adsorption at oil-water interfaces has received much attention in applications of food emulsion and biocatalysis. The protein activity is influenced by the protein orientation and conformation. The oil polarity is expected to influence the orientation and conformation of adsorbed proteins by modulating intermolecular interactions. Hence, it is possible to tune the protein emulsion stability and activity by varying the oil polarity. Martini v3.0-based coarse-grained molecular dynamics (CGMD) simulations were employed to investigate the effect of oil polarity on the orientation and conformation of hydrophobin (HFBI) and Candida antarctica lipase B (CALB) adsorbed at triolein-water, hexadecane-water, and octanol-water interfaces for the first time. The protein adsorption orientation was predicted through the hydrophobic dipole, indicating that protein adsorption exists in preferred orientations at hydrophobic oil interfaces. The conformation of the adsorbed HFBI is well conserved, whereas relatively larger conformational changes occur during the CALB adsorption as the oil hydrophobicity increases. Comparisons on the adsorption interaction energy of proteins with oils confirm the relationship between the oil polarity and the interaction strength of proteins with oils. In addition, CGMD simulations allow longer time scale simulations of the behaviors of protein adsorption at oil-water interfaces.
Collapse
Affiliation(s)
- Hai Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lanlan Qin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
5
|
Egghe T, Morent R, Hoogenboom R, De Geyter N. Substrate-independent and widely applicable deposition of antibacterial coatings. Trends Biotechnol 2023; 41:63-76. [PMID: 35863949 DOI: 10.1016/j.tibtech.2022.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022]
Abstract
Antibacterial coatings are regarded as a necessary tool to prevent implant-related infections. Substrate-independent and widely applicable coating techniques are gaining significant interest to synthesize different types of antibacterial films, which can be relevant from a fundamental and application-oriented perspective. Plasma polymer- and polydopamine-based antibacterial coatings represent the most widely studied and versatile approaches among these coating techniques. Both single- and dual-functional antibacterial coatings can be fabricated with these approaches and a variety of dual-functional antibacterial coating strategies can still be explored in future work. These coatings can potentially be used for a wide range of different implants (material, shape, and size). However, for most implants, significantly more fundamental knowledge needs to be gained before these coatings can find real-life use.
Collapse
Affiliation(s)
- Tim Egghe
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium; Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Tang Y, Wang H, Liu S, Pu L, Hu X, Ding J, Xu G, Xu W, Xiang S, Yuan Z. A review of protein hydrogels: Protein assembly mechanisms, properties, and biological applications. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Chen K, Wu Y, Wu X, Zhou M, Zhou R, Wang J, Xiao X, Yuan Y, Liu R. Facile synthesis of polypeptoids bearing bulky sidechains via urea accelerated ring-opening polymerization of α-amino acid N-substituted N-carboxyanhydrides. Polym Chem 2022. [DOI: 10.1039/d1py01324f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The organocatalyst 1,3-bis[3,5-bis(trifluoromethyl)phenyl]urea (U–O) accelerates the ring-opening polymerization of α-amino acid N-substituted N-carboxyanhydrides (NNCAs) for the rapid synthesis of polypeptoids bearing bulky sidechains.
Collapse
Affiliation(s)
- Kang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yueming Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ruiyi Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangzhou Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Preparation and Antifouling Property of Polyurethane Film Modified by PHMG and HA Using Layer-by-Layer Assembly. Polymers (Basel) 2021; 13:polym13060934. [PMID: 33803560 PMCID: PMC8002859 DOI: 10.3390/polym13060934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 11/24/2022] Open
Abstract
To reduce the possibility of bacterial infection and implant-related complications, surface modification on polyurethane (PU) film is an ideal solution to endow hydrophobic PU with antibacterial and antifouling properties. In this work, a variety of polyhexamethylene guanidine/ hyaluronic acid (PHMG/HA) multilayer films were self-assembled layer-by-layer on PU films using polyanions, carboxyl-activated HA, and polycations PHMG by controlling the concentration of these polyelectrolytes as well as the number of layers self-assembled. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) spectra, water contact angle (WCA), and A Atomic force microscope (AFM) of PU and modified PU films were studied. Protein adsorption and bacterial adhesion as well as the cytotoxicity against L929 of the film on selected PU-(PHMG/HA)5/5-5 were estimated. The results showed that PU-(PHMG/HA)5/5-5 had the best hydrophilicity among all the prepared films, possessing the lowest level of protein adsorption. Meanwhile, this film showed efficient broad-spectrum antibacterial performance as well as significant resistance of bacterial adhesion of more than a 99.9% drop for the selected bacteria. Moreover, almost no influence on cell viability of L929 enhanced the biocompatibility of film. Therefore, the modified PU films with admirable protein absorption resistance, antimicrobial performance, and biocompatibility would have promising applications in biomedical aspect.
Collapse
|