1
|
Liang C, Sun K, Chen M, Xu P. Crystal-Phase Engineering of Two-Dimensional Transition-Metal Dichalcogenides for Surface-Enhanced Raman Scattering: A Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11946-11953. [PMID: 37590920 DOI: 10.1021/acs.langmuir.3c01479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Two-dimensional (2D) transition-metal dichalcogenides (TMDs) have emerged as promising materials for surface-enhanced Raman scattering (SERS) due to their unique electronic, optical, and mechanical properties. In this Perspective, we briefly introduce the fundamental properties, crystal-phase configurations, and phase transition strategies of TMDs materials. We then discuss the importance of the crystal phase in determining the SERS effect of TMDs, highlighting recent advances in phase-engineering approaches to affording remarkable SERS performance. By considering the current challenges and future directions for improving the crystal-phase engineering of TMDs in SERS, we also offer new insights into the design and synthesis of more promising TMD-based SERS substrates.
Collapse
Affiliation(s)
- Ce Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Kexin Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Mengxin Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
2
|
Chen HY, Xin PL, Xu HB, Lv J, Qian RC, Li DW. Self-Assembled Plasmonic Nanojunctions Mediated by Host-Guest Interaction for Ultrasensitive Dual-Mode Detection of Cholesterol. ACS Sens 2023; 8:388-396. [PMID: 36617720 DOI: 10.1021/acssensors.2c02570] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, a fluorescence and surface-enhanced Raman spectroscopy dual-mode system was designed for cholesterol detection based on self-assembled plasmonic nanojunctions mediated by the competition of rhodamine 6G (R6G) and cholesterol with β-cyclodextrin modified on gold nanoparticles (HS-β-CD@Au). The fluorescence of R6G was quenched by HS-β-CD@Au due to the fluorescence resonance energy transfer effect. When cholesterol was introduced as the competitive guest, R6G in the cavities of HS-β-CD@Au was displaced to recover its fluorescence. Moreover, two of HS-β-CD@Au can be linked by one cholesterol to form a more stable 2:1 complex, and then, plasmonic nanojunctions were generated, which resulted in the increasing SERS signal of R6G. In addition, fluorescence and SERS intensity of R6G increased linearly with the increase in the cholesterol concentrations with the limits of detection of 95 and 74 nM, respectively. Furthermore, the dual-mode strategy can realize the reliable and sensitive detection of cholesterol in the serum with good accuracy, and two sets of data can mutually validate each other, which demonstrated great application prospects in the surveillance of diseases related with cholesterol.
Collapse
Affiliation(s)
- Hua-Ying Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Pei-Lin Xin
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Han-Bin Xu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| |
Collapse
|
3
|
Dutta V, Devasia J, Chauhan A, M J, L VV, Jha A, Nizam A, Lin KYA, Ghotekar S. Photocatalytic nanomaterials: Applications for remediation of toxic polycyclic aromatic hydrocarbons and green management. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
4
|
Zhang M, Tian Y, Jiao A, Ma H, Wang C, Zheng L, Li S, Chen M. Synergistic double laser beam-boosted liquid-NIR-SERS for ultralow detection of non-adsorptive polycyclic aromatic hydrocarbons in lake water. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2875-2889. [PMID: 39634091 PMCID: PMC11501877 DOI: 10.1515/nanoph-2022-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 12/07/2024]
Abstract
Ultrasensitive trace-detection of toxic and carcinogenic polycyclic aromatic hydrocarbons (PAHs) can ceaselessly propel the environmental surveillance in aqueous ecosystems. Due to the intrinsic nonadsorptive feature of PAHs, the promising technique of surface-enhanced Raman scattering (SERS) spectroscopy has been restricted to diverse functional ligands-based surface modifications of nano-substrates. However, it is not suitable for practical ultralow liquid analysis. Herein, we propose an extraordinary strategy to boost liquid-near infrared (NIR)-SERS activity of plasmonic Au/Ag nano-urchins (NUs) by introducing extra 808 nm laser-triggered an additional strong electromagnetic enhancement into routine 785 nm laser-Raman system. The synergistic double laser-excited NIR-SERS of colloidal Au/Ag NUs enables the Raman signals of crystal violet to be significantly enhanced, approaching a maximum of ∼34-fold increase than that of traditional bare 785 nm laser-excitation. More importantly, the improved liquid-NIR-SERS enables the in-situ detection limit of pyrene molecules in lake water to be achieved at ∼10-9 M, which is already better than many previous SERS results based on the complicated functionalized nano-substrates. The established double laser-boosted NIR-SERS can also be easily extended to the simultaneous trace-detection of three PAHs-contaminated mixtures, supporting well distinguishable capability. Undoubtedly, the present work opens a new versatile and innovative avenue for ultrasensitive NIR-SERS monitoring of nonadsorptive toxic pollutants in wastewater.
Collapse
Affiliation(s)
| | - Yue Tian
- Shandong University, Jinan, China
| | | | - Hui Ma
- Shandong University, Jinan, China
| | | | - Linqi Zheng
- Shandong Jianzhu University, Jinan, Shandong, China
| | - Shuang Li
- Shandong Jianzhu University, Jinan, Shandong, China
| | | |
Collapse
|
5
|
Ni M, Sun L, Liu B. Mesoporous Gold Nanostructures: Synthesis and Beyond. J Phys Chem Lett 2022; 13:4410-4418. [PMID: 35549343 DOI: 10.1021/acs.jpclett.2c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mesoporous metal nanostructures have offered multiple advantages that cannot be realized elsewhere. These materials have been attracting more research attention in catalysis and electrocatalysis owing to their functional structures and compositions. Of the various mesoporous metals available, mesoporous gold (mesoAu) nanostructures are of special interest in surface-enhanced Raman scattering (SERS) and related applications because of their strong electromagnetic field (localized surface plasmon resonance). In the last few decades, various synthesis strategies have been developed to prepare mesoAu nanostructures with controllable morphologies that exhibit fascinating physicochemical properties and increase applications in SERS, catalysis, and electrocatalysis. In this Perspective, we systematically summarize recent advances in synthesis and applications of mesoAu nanostructures. Four synthesis strategies, including dealloying, nanocasting, electrochemical deposition, and intermediate template, are discussed in detail. Moreover, physicochemical properties and promising applications of mesoAu nanostructures are presented. Finally, we describe current challenges and give a general outlook to explore further directions in synthesis and applications of mesoAu nanostructures.
Collapse
Affiliation(s)
- Mei Ni
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Caroleo F, Magna G, Naitana ML, Di Zazzo L, Martini R, Pizzoli F, Muduganti M, Lvova L, Mandoj F, Nardis S, Stefanelli M, Di Natale C, Paolesse R. Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:2649. [PMID: 35408267 PMCID: PMC9002670 DOI: 10.3390/s22072649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 05/17/2023]
Abstract
Optical chemical sensors are widely applied in many fields of modern analytical practice, due to their simplicity in preparation and signal acquisition, low costs, and fast response time. Moreover, the construction of most modern optical sensors requires neither wire connections with the detector nor sophisticated and energy-consuming hardware, enabling wireless sensor development for a fast, in-field and online analysis. In this review, the last five years of progress (from 2017 to 2021) in the field of optical chemical sensors development for persistent organic pollutants (POPs) is provided. The operating mechanisms, the transduction principles and the types of sensing materials employed in single selective optical sensors and in multisensory systems are reviewed. The selected examples of optical sensors applications are reported to demonstrate the benefits and drawbacks of optical chemical sensor use for POPs assessment.
Collapse
Affiliation(s)
- Fabrizio Caroleo
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Gabriele Magna
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Mario Luigi Naitana
- Department of Science, Roma Tre University, Via della Vasca Navale 84, 00146 Rome, Italy;
| | - Lorena Di Zazzo
- Department of Electronic Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy; (L.D.Z.); (C.D.N.)
| | - Roberto Martini
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Francesco Pizzoli
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Mounika Muduganti
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Larisa Lvova
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Federica Mandoj
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Sara Nardis
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Manuela Stefanelli
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy; (L.D.Z.); (C.D.N.)
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| |
Collapse
|
7
|
Queiros Campos J, Boulares M, Raboisson-Michel M, Verger-Dubois G, García Fernández JM, Godeau G, Kuzhir P. Improved Magneto-Microfluidic Separation of Nanoparticles through Formation of the β-Cyclodextrin-Curcumin Inclusion Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14345-14359. [PMID: 34855402 DOI: 10.1021/acs.langmuir.1c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular adsorption to the nanoparticle surface may switch the colloidal interactions from repulsive to attractive and promote nanoparticle agglomeration. If the nanoparticles are magnetic, then their agglomerates exhibit a much stronger response to external magnetic fields than individual nanoparticles. Coupling between adsorption, agglomeration, and magnetism allows a synergy between the high specific area of nanoparticles (∼100 m2/g) and their easy guidance or separation by magnetic fields. This yet poorly explored concept is believed to overcome severe restrictions for several biomedical applications of magnetic nanoparticles related to their poor magnetic remote control. In this paper, we test this concept using curcumin (CUR) binding (adsorption) to β-cyclodextrin (βCD)-coated iron oxide nanoparticles (IONP). CUR adsorption is governed by host-guest hydrophobic interactions with βCD through the formation of 1:1 and, possibly, 2:1 βCD:CUR inclusion complexes on the IONP surface. A 2:1 stoichiometry is supposed to promote IONP primary agglomeration, facilitating the formation of the secondary needle-like agglomerates under external magnetic fields and their magneto-microfluidic separation. The efficiency of these field-induced processes increases with CUR concentration and βCD surface density, while their relatively short timescale (<5 min) is compatible with magnetic drug delivery application.
Collapse
Affiliation(s)
- J Queiros Campos
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
| | - M Boulares
- University of Carthage, Faculty of Sciences of Bizerte, Centre des Recherches et des Technologies des Eaux (CERTE) Technopole de Borj-Cédria, Route touristique de Soliman BPn° 273, Soliman 8020, Tunisia
| | - M Raboisson-Michel
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
- Axlepios Biomedical, 1st Avenue, 5th Street, Carros 06510, France
| | - G Verger-Dubois
- Axlepios Biomedical, 1st Avenue, 5th Street, Carros 06510, France
| | - J M García Fernández
- Instituto de Investigaciones Qumicas, CSIC and Universidad de Sevilla, Av. Amrico Vespucio 49, Isla de la Cartuja, Sevilla 41092, Spain
| | - G Godeau
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
| | - P Kuzhir
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
| |
Collapse
|
8
|
Markina NE, Cialla-May D, Markin AV. Cyclodextrin-assisted surface-enhanced Raman spectroscopy: a critical review. Anal Bioanal Chem 2021; 414:923-942. [PMID: 34635933 PMCID: PMC8724143 DOI: 10.1007/s00216-021-03704-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Numerous approaches have been proposed to overcome the intrinsically low selectivity of surface-enhanced Raman spectroscopy (SERS), and the modification of SERS substrates with diverse recognition molecules is one of such approaches. In contrast to the use of antibodies, aptamers, and molecularly imprinted polymers, application of cyclodextrins (CDs) is still developing with less than 100 papers since 1993. Therefore, the main goal of this review is the critical analysis of all available papers on the use of CDs in SERS analysis, including physicochemical studies of CD complexation and the effect of CD presence on the Raman enhancement. The results of the review reveal that there is controversial information about CD efficiency and further experimental investigations have to be done in order to estimate the real potential of CDs in SERS-based analysis.
Collapse
Affiliation(s)
- Natalia E Markina
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of the Leibniz Research Alliance, "Leibniz Health Technologies", Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, Friedrich-Schiller-University, Philosophenweg 7, 07743, Jena, Germany
| | - Alexey V Markin
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia.
- Leibniz Institute of Photonic Technology, Member of the Leibniz Research Alliance, "Leibniz Health Technologies", Albert-Einstein-Straße 9, 07745, Jena, Germany.
| |
Collapse
|
9
|
Sun J, Xue D, Shan W, Liu R, Liu R, Zhao H, Li T, Wang Z, Zhang J, Shao B. In Situ Growth Large Area Silver Nanostructure on Metal Phenolic Network Coated NAAO Film and Its SERS Sensing Application for Monofluoroacetic Acid. ACS Sens 2021; 6:2129-2135. [PMID: 34080834 DOI: 10.1021/acssensors.1c00560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid screening monofluoroacetic acid (FAcOH) is responsible for preventing chemical poisoning and food safety events. Whereas surface enhanced Raman scattering (SERS) spectra is an effective tool for detecting forbidden chemicals, it is difficult to directly detect FAcOH due to its small Raman scattering cross section as well as weak adsorption on SERS substrates. In this work, the metal phenolic supramolecular networks (MPNs, i.e., the tannic acid and Fe3+ complex) were fabricated on the commercial nanoanodic aluminum oxide film (NAAO) for assisting in situ chemical deposition highly uniform Ag nanostructure over large areas (the NAAO@AgNS). The low cost and simple fabrication process made the NAAO@AgNS a single-use consumable. For FAcOH detection, a specific derivative reaction between FAcOH and thiosalicylic acid (TSA) was introduced. By taking TSA as the Raman probe, its SERS signal attenuated constantly with the increasing amount of FAcOH. For improving quantitative accuracy, thiocyanate (SCN-) was introduced on the NAAO@AgNS as an internal standard; thus, the characteristic peak intensity ratios associated with TSA and SCN- (I1035/I2125) were fitted to the concentration of FAcOH. It was demonstrated that the SERS assay achieved good sensitivity and selection toward FAcOH with the limit of quantitation (LOD) as low as 50 nmol L-1. The NAAO@AgNS featured with highly sensitive, uniform, and consistent SERS performances could easily extend to wide SERS applications.
Collapse
Affiliation(s)
- Jiefang Sun
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Dingshuai Xue
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Wenchong Shan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runqing Liu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Huachao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ting Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Sherman LM, Strausser SL, Borsari RK, Jenkins DM, Camden JP. Imidazolinium N-Heterocyclic Carbene Ligands for Enhanced Stability on Gold Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5864-5871. [PMID: 33914540 DOI: 10.1021/acs.langmuir.1c00314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
N-heterocyclic carbenes (NHCs) have emerged as versatile and robust ligands for noble metal surface modifications due to their ability to form compact, self-assembled monolayers. Despite a growing body of research, previous NHC surface modification schemes have employed just two structural motifs: the benzimidazolium NHC and the imidazolium NHC. However, different NHC moieties, including saturated NHCs, are often more effective in homogenous catalysis chemistry than these aforementioned motifs and may impart numerous advantages to NHC surfaces, such as increased stability and access to chiral groups. This work explores the preparation and stability of NHC-coated gold surfaces using imidazolium and imidazolinium NHC ligands. X-ray photoelectron spectroscopy and surface-enhanced Raman spectroscopy demonstrate the attachment of NHC ligands to the gold surface and show enhanced stability of imidazolinium compared to the traditional imidazolium under harsh acidic conditions.
Collapse
Affiliation(s)
- Lindy M Sherman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, South Bend 46556, Indiana, United States
| | - Shelby L Strausser
- Department of Chemistry, University of Tennessee, Knoxville 37996, Tennessee, United States
| | - Rowan K Borsari
- Department of Chemistry, University of Tennessee, Knoxville 37996, Tennessee, United States
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville 37996, Tennessee, United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, South Bend 46556, Indiana, United States
| |
Collapse
|