1
|
Wu W, Li Z, Feng D, Tang Q, Liu S, Lin W. Dissipative Particle Dynamics: Simulation of Chitosan-Citral Microcapsules. Polymers (Basel) 2025; 17:678. [PMID: 40076170 PMCID: PMC11902801 DOI: 10.3390/polym17050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
In this paper, the dissipative particle dynamics (DPD) method is used to simulate the self-assembly process, appearance, mesoscopic structure, and wrapping properties of microcapsules formed with citral as the core material and chitosan and sodium alginate as the single-wall materials, and with citral as the core material and chitosan-sodium alginate, chitosan-methylcellulose, sodium alginate-chitosan, and sodium alginate-methylcellulose as the double-wall materials. The effects of chitosan content and wall material composition on the structure, morphology, encapsulation performance, and stability of microcapsules are compared and analyzed. In addition, the microcapsules are deeply analyzed by using the mesoscopic structure, radial distribution function, and diffusion coefficient. This study provides a new idea and method for the preparation of citral microcapsules, and is of great significance for the design and development of new composite wall microcapsules.
Collapse
Affiliation(s)
- Wensheng Wu
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (W.W.); (Q.T.); (S.L.)
| | - Zhiwei Li
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (W.W.); (Q.T.); (S.L.)
| | - Dachun Feng
- College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Qing Tang
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (W.W.); (Q.T.); (S.L.)
| | - Shuijiao Liu
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (W.W.); (Q.T.); (S.L.)
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Hendrikse RL, Amador C, Wilson MR. Dissipative particle dynamics parametrisation using infinite dilution activity coefficients: the impact of bonding. Phys Chem Chem Phys 2025; 27:1554-1566. [PMID: 39711230 DOI: 10.1039/d4cp03791j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Dissipative particle dynamics (DPD) simulations have proven to be a valuable coarse-grained simulation technique for studying complex systems such as surfactant and polymer solutions. However, the best method to use in parametrising DPD systems is not universally agreed. One common approach is to map infinite dilution activity coefficients to the DPD simulation 'beads' that represent molecular fragments. However, we show that here that this approach can lead to serious errors when bonding beads together to create molecules. We show errors arise from the verlaps between bonded beads, which alters their solubility. In this article, we demonstrate how these bonding errors can be accounted for when defining DPD force fields using simple theoretical methods to account for the overlapping volumes, and we demonstrate the validity of our approach by calculating the partition coefficients for a series of solutes into two immiscible solvents.
Collapse
Affiliation(s)
| | - Carlos Amador
- Procter and Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK
| | - Mark R Wilson
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
3
|
Zhang H, Li L, Ding W, Cheng Z, Lin Z, Zhu L, Zhang X. Effect mechanism of metal cations on the interface interaction of cell-collector-bubble for microalgal foam flotation. CHEMOSPHERE 2024; 349:140899. [PMID: 38065264 DOI: 10.1016/j.chemosphere.2023.140899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/12/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Foam flotation is generally recognized as a low-cost and efficient technology for the harvesting of microalgae for food, feed and fuel production, as well as environmental remediation. However, the harvesting efficiency of microalgae using foam flotation is restricted by the residual metal cations in the medium, and the corresponding inhibition mechanism has not yet been revealed. This study investigated the effects of metal cations in the medium on the harvesting efficiency and concentration factor during the foam flotation of Scenedesmus acuminatus. The interface interaction of cell-collector-bubble effected by metal cations was revealed by quantifying the amount of collector (cetyl trimethylammonium bromide, CTAB) between cells and bubbles, as well as the response of bubble interface characteristics. Results showed that the harvesting efficiency dropped linearly as the increase of cationic concentrations. Under the CTAB dose of 20 mg L-1, the harvesting efficiency decreased from 98.65% to 56.77% with a decrease of concentration factor from 25.41 to 9.05 in the presence of metal cations. The Na+ and Mg2+ in the medium were the major inhibitors. The inhibitory mechanisms revealed that metal cations obviously impeded the adsorption of CTAB onto the cells by competing adsorption site, resulting in a low harvesting efficiency. The presence of metal cations also inhibited the bubble coalescence and slowed down drainage velocity in the plateau channel of foam layer, forming foam with higher water content, thus reducing the concentration factor. A schematic illustration is proposed to better understand the effect mechanism of metal cations on microalgal foam flotation. This study might facilitate the process development in an effort to overcome the inhibition of cations during microalgal foam flotation.
Collapse
Affiliation(s)
- Haiyang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lili Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wenting Ding
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Ziqian Cheng
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Zhe Lin
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Liandong Zhu
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, China.
| | - Xuezhi Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
4
|
Hendrikse RL, Amador C, Wilson MR. A many-body dissipative particle dynamics parametrisation scheme to study behaviour at air-water interfaces. SOFT MATTER 2023; 19:3590-3604. [PMID: 37161599 DOI: 10.1039/d3sm00276d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this article, we present a general parametrisation scheme for many-body dissipative particle dynamics (MDPD). The scheme is based on matching model components to experimental surface tensions and chemical potentials. This allows us to obtain the correct surface and mixing behaviours of complex, multicomponent systems. The methodology is tested by modelling the behaviour of nonionic polyoxyethylene alkyl ether surfactants at an air/water interface. In particular, the influence of the number of ethylene oxide units in the surfactant head group is investigated. We find good agreement with many experimentally obtained parameters, such as minimum surface area per molecule; and a decrease in the surface tension with increasing surfactant surface density. Moreover, we observe an orientational transition, from surfactants lying directly on the water surface at low surface coverage, to surfactants lying parallel or tilted with respect to the surface normal at high surface coverage. The parametrisation scheme is also extended to cover the zwitterionic surfactant lauryldimethylamine oxide (LDAO), where we provide good predictions for the surface tension at maximum surface coverage. Here, if we exceed this coverage, we are able to demonstrate the spontaneous production of micelles from the surface surfactant layer.
Collapse
Affiliation(s)
| | - Carlos Amador
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| | - Mark R Wilson
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
5
|
Palkar V, Thakar D, Kuksenok O. Nanogel Degradation at Soft Interfaces and in Bulk: Tracking Shape Changes and Interfacial Spreading. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Vaibhav Palkar
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Devanshu Thakar
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Chemical Engineering, Indian Institute of Technology, Gandhinagar 382055, India
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
6
|
Xu S, Wang Z, Yu Y, Zhu Q, Zhang X. Conformations and dynamic behaviors of confined wormlike chains in a pressure-driven flow. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
The conformations and dynamic behaviors of wormlike chains confined by a slit in a pressure-driven flow were investigated using dissipative particle dynamics method. The wormlike chains exhibit varying conformations due to the varying shear stresses across the slit. The wormlike chain solution can be well described by the power-law fluid, and the power-law index decreases with the increase in chain rigidity. We also presented that the wormlike chain undergoes tumbling motion in the vicinity of the wall in the presence of pressure-driven flow. We also found that the wormlike chains can migrate both away from the wall and slightly away from the slit center, and the migration away from the slit center increases as the chain rigidity is increased because of hydrodynamic interactions induced in a more rigid wormlike chain.
Collapse
Affiliation(s)
- Shaofeng Xu
- School of Mechatronics and Energy Engineering, NingboTech University , Ningbo , 315000 , China
| | - Ziheng Wang
- Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University , Hangzhou , 310000 , China
| | - Yifan Yu
- School of Mechanical Engineering, Zhejiang University , Hangzhou , 310000 , China
| | - Qiaohui Zhu
- School of Mechanical Engineering, Zhejiang University , Hangzhou , 310000 , China
| | - Xuechang Zhang
- School of Mechatronics and Energy Engineering, NingboTech University , Ningbo , 315000 , China
| |
Collapse
|
7
|
Ma X, Li M, Xu X, Sun C. Coupling Effects of Ionic Surfactants and Electrolytes on the Stability of Bulk Nanobubbles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193450. [PMID: 36234578 PMCID: PMC9565236 DOI: 10.3390/nano12193450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 05/14/2023]
Abstract
As interest in the extensive application of bulk nanobubbles increases, it is becoming progressively important to understand the key factors affecting their anomalous stability. The scientific intrigue over nanobubbles originates from the discrepancy between the Epstein-Plesset prediction and experimental observations. Herein, the coupling effects of ionic surfactants and electrolytes on the stability of bulk nanobubbles is studied. Experimental results show that ionic surfactants not only reduce the surface tension but also promote the accumulation of net charges, which facilitate the nucleation and stabilization of bulk nanobubbles. The addition of an electrolyte in a surfactant solution further results in a decrease in the zeta potential and the number concentration of nanobubbles due to the ion shielding effect, essentially colloidal stability. An adsorption model for the coexistence of ionic surfactants and electrolytes in solution, that specifically considers the effect of the adsorption layer thickness within the framework of the modified Poisson-Boltzmann equation, is developed. A quantitative agreement between the predicted and experimental surface tension is found in a wide range of bulk concentrations. The spatial distribution of the surface potential, surfactant ions and counterions in the vicinity of the interface of bulk nanobubbles are described. Our study intrinsically paves a route to investigate the stability of bulk nanobubbles.
Collapse
|
8
|
Kumar V, Mitchell-Koch KR, Marapureddy SG, Verma R, Thareja P, Kuperkar K, Bahadur P. Self-Assembly and Micellar Transition in CTAB Solutions Triggered by 1-Octanol. J Phys Chem B 2022; 126:8102-8111. [PMID: 36171735 DOI: 10.1021/acs.jpcb.2c05636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study exploits higher-order micellar transition ranging from ellipsoidal to rodlike to wormlike induced by 1-octanol (C8OH) in an aqueous solution of cetyltrimethylammonium bromide (CTAB), characterizing phase behavior, rheology, and small-angle neutron scattering (SANS). The phase diagram for the ternary system CTAB-C8OH-water was constructed, which depicted the varied solution behavior. Such performance was further inferred from the rheology study (oscillatory-shear frequency sweep (ω) and viscosity (η)) that displayed an interesting solution behavior of CTAB solutions as a function of C8OH. It was observed that at low C8OH concentrations, the solutions appeared viscous/viscoelastic fluids that changed to an elastic gel with an infinite relaxation time at higher concentrations of C8OH, thereby confirming the existence of distinct micelle morphologies. Small-angle neutron scattering (SANS) provided various micellar parameters such as aggregation numbers (Nagg) and micellar size/shape. The experimental results were further validated with a computational simulation approach. The molecular dynamic (MD) study offered an insight into the molecular interactions and aggregation behavior through different analyses, including radial distribution function (RDF), radius of gyration (Rg), and solvent-accessible surface area (SASA).
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat 395007, Gujarat, India
| | - Katie R Mitchell-Koch
- Department of Chemistry, Wichita State University (WSU), Wichita, Kansas 67260-0051, United States
| | - Sai Geetha Marapureddy
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar 382355, Gujarat, India
| | - Rajni Verma
- Genzada Pharmaceuticals, Hutchinson, Kansas 67502, United States
| | - Prachi Thareja
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar 382355, Gujarat, India
| | - Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat 395007, Gujarat, India
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India
| |
Collapse
|
9
|
Mesoscale Modeling of Agglomeration of Molecular Bottlebrushes: Focus on Conformations and Clustering Criteria. Polymers (Basel) 2022; 14:polym14122339. [PMID: 35745920 PMCID: PMC9227207 DOI: 10.3390/polym14122339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Using dissipative particle dynamics, we characterize dynamics of aggregation of molecular bottlebrushes in solvents of various qualities by tracking the number of clusters, the size of the largest cluster, and an average aggregation number. We focus on a low volume fraction of bottlebrushes in a range of solvents and probe three different cutoff criteria to identify bottlebrushes belonging to the same cluster. We demonstrate that the cutoff criteria which depend on both the coordination number and the length of the side chain allows one to correlate the agglomeration status with the structural characteristics of bottlebrushes in solvents of various qualities. We characterize conformational changes of the bottlebrush within the agglomerates with respect to those of an isolated bottlebrush in the same solvents. The characterization of bottlebrush conformations within the agglomerates is an important step in understanding the relationship between the bottlebrush architecture and material properties. An analysis of three distinct cutoff criteria to identify bottlebrushes belonging to the same cluster introduces a framework to identify both short-lived transient and long-lived agglomerates; the same approach could be further extended to characterize agglomerates of various macromolecules with complex architectures beyond the specific bottlebrush architecture considered herein.
Collapse
|
10
|
Faria BF, Vishnyakov AM. Simulation of surfactant adsorption at liquid-liquid interface: what we may expect from soft-core models?. J Chem Phys 2022; 157:094706. [DOI: 10.1063/5.0087363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The present work attempt to explore systematically the surfactant sorption at liquid-liquid interfaces with coarse-grained models targeting thermodynamic properties of reference liquid solutions. We employ dissipative particle dynamics with soft-core forcefield tested against experimental data on micellization of surfactants in water, and the previous results are reproduced in this work. We consider three different nonionic surfactants: hexaethylene glycol monododecyl ether (C12E6), 2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethanol) knows as Triton X-100 (TХ-100), and two alkyl glucoside surfactants (CnG1) with n-alkane tail fragments and a saccharide hydrophilic head at decane-water and toluene-water interfaces. For TX-100, we composed a model based on the literature forcefield and found a good agreement with the experimental CMC. The head-head interactions are of different origins for different surfactant groups: entropic repulsion between ethylene oxide chains of C12E6 and TX-100, and more chemically specific and complex interactions between the maltose heads of alkyl glucosides. We interpret our results with the Redlich-Peterson equation of monolayer adsorption in order to relate the adsorption to the bulk concentration of the surfactant and the interfacial tension. The densities of the adsorbed monolayer at CMC mostly agree with the experimental data, and a reasonable agreement was obtained for the interfacial tension at CMC. At the same time, we found significant discrepancies between the simulated and experimental adsorption isotherms. We explain them by the oversimplified forcefield: when the parameters are fitted to the free energies of bulk solutions, they may not correctly reproduce the interfacial free energies.
Collapse
Affiliation(s)
| | - Aleksey M Vishnyakov
- Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Russia
| |
Collapse
|
11
|
de Souza RM, Romeu FC, Ribeiro MCC, Karttunen M, Dias LG. Osmotic Method for Calculating Surface Pressure of Monolayers in Molecular Dynamics Simulations. J Chem Theory Comput 2022; 18:2042-2046. [PMID: 35254819 DOI: 10.1021/acs.jctc.2c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surface pressure is a fundamental thermodynamic property related to the activity of molecules at interfaces. In molecular simulations, it is typically calculated from its definition: the difference between the surface tension of the air-water and air-surfactant interfaces. In this Letter, we show how to connect the surface pressure with a two-dimensional osmotic pressure and how to take advantage of this analogy to obtain a practical method of calculating surface pressure-area isotherms in molecular simulation. As a proof-of-concept, compression curves of zwitterionic and ionic surfactant monolayers were obtained using the osmotic approach and the curves were compared with the ones from the traditional pressure tensor-based scheme. The results shown an excellent agreement between both alternatives. Advantageously, the osmotic approach is simple to use and allows to obtain the surface pressure-area isotherm on the fly with a single simulation using equilibration stages.
Collapse
Affiliation(s)
- Rafael Maglia de Souza
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, 05508-000, São Paulo, SP,Brasil
| | - Fábio Cavalcante Romeu
- Departamento de Química, FFCLRP, Universidade de São Paulo, Avenida Bandeirantes 3900, 14040-901, Ribeirão Preto, SP,Brasil
| | - Mauro Carlos Costa Ribeiro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, 05508-000, São Paulo, SP,Brasil
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario Canada, N6A 5B7.,Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 3K7.,Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario Canada, N6A 5B7
| | - Luís Gustavo Dias
- Departamento de Química, FFCLRP, Universidade de São Paulo, Avenida Bandeirantes 3900, 14040-901, Ribeirão Preto, SP,Brasil
| |
Collapse
|
12
|
DPD Simulation on the Transformation and Stability of O/W and W/O Microemulsions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041361. [PMID: 35209153 PMCID: PMC8878357 DOI: 10.3390/molecules27041361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
The dissipative particle dynamics simulation method is adopted to investigate the microemulsion systems prepared with surfactant (H1T1), oil (O) and water (W), which are expressed by coarse-grained models. Two topologies of O/W and W/O microemulsions are simulated with various oil and water ratios. Inverse W/O microemulsion transform to O/W microemulsion by decreasing the ratio of oil-water from 3:1 to 1:3. The stability of O/W and W/O microemulsion is controlled by shear rate, inorganic salt and the temperature, and the corresponding results are analyzed by the translucent three-dimensional structure, the mean interfacial tension and end-to-end distance of H1T1. The results show that W/O microemulsion is more stable than O/W microemulsion to resist higher inorganic salt concentration, shear rate and temperature. This investigation provides a powerful tool to predict the structure and the stability of various microemulsion systems, which is of great importance to developing new multifunctional microemulsions for multiple applications.
Collapse
|
13
|
Palkar V, Kuksenok O. Controlling Degradation and Erosion of Polymer Networks: Insights from Mesoscale Modeling. J Phys Chem B 2021; 126:336-346. [PMID: 34964629 DOI: 10.1021/acs.jpcb.1c09570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding and controlling degradation of polymer networks on the mesoscale is critical for a range of applications. We utilize dissipative particle dynamics to capture photocontrolled degradation and erosion processes in hydrogels formed by end-linking of four-arm polyethylene glycol precursors. We demonstrate that the polydispersity and the fraction of broken-off fragments scale with the relative extent of reaction. The reverse gel point measured is close to the value predicted by the bond percolation theory on a diamond lattice. We characterize the erosion process via tracking the mass loss that accounts for the fragments remaining in contact with the percolated network. We quantify the dependence of the mass loss on the extent of reaction and on the properties of the film prior to degradation. These results elucidate the main features of degradation and erosion on the mesoscale and could provide guidelines for future design of degrading materials with dynamically controlled properties.
Collapse
Affiliation(s)
- Vaibhav Palkar
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
14
|
Santo KP, Neimark AV. Dissipative particle dynamics simulations in colloid and Interface science: a review. Adv Colloid Interface Sci 2021; 298:102545. [PMID: 34757286 DOI: 10.1016/j.cis.2021.102545] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022]
Abstract
Dissipative particle dynamics (DPD) is one of the most efficient mesoscale coarse-grained methodologies for modeling soft matter systems. Here, we comprehensively review the progress in theoretical formulations, parametrization strategies, and applications of DPD over the last two decades. DPD bridges the gap between the microscopic atomistic and macroscopic continuum length and time scales. Numerous efforts have been performed to improve the computational efficiency and to develop advanced versions and modifications of the original DPD framework. The progress in the parametrization techniques that can reproduce the engineering properties of experimental systems attracted a lot of interest from the industrial community longing to use DPD to characterize, help design and optimize the practical products. While there are still areas for improvements, DPD has been efficiently applied to numerous colloidal and interfacial phenomena involving phase separations, self-assembly, and transport in polymeric, surfactant, nanoparticle, and biomolecules systems.
Collapse
Affiliation(s)
- Kolattukudy P Santo
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Alexander V Neimark
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| |
Collapse
|
15
|
Inserting EO groups to improve the performance of fatty acid collectors: Flotation and adsorption study performed with calcite, dolomite, and quartz. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Zhang H, Zhu Z, Wu Z, Wang F, Xu B, Wang S, Zhang L. Investigation on the formation and stability of microemulsions with Gemini surfactants: DPD simulation. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1961588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Haixia Zhang
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou, People’s Republic of China
| | - Zhenxing Zhu
- Binzhou City Building and Design Institute, Binzhou, People’s Republic of China
| | - Zongxu Wu
- Binzhou Dayou New Energy Development Company Limited, Binzhou, People’s Republic of China
| | - Fang Wang
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou, People’s Republic of China
| | - Bin Xu
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou, People’s Republic of China
| | - Shoulong Wang
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou, People’s Republic of China
| | - Lijuan Zhang
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou, People’s Republic of China
| |
Collapse
|
17
|
Kumar V, Sai GM, Verma R, Mitchell-Koch KR, Ray D, Aswal VK, Thareja P, Kuperkar K, Bahadur P. Tuning Cationic Micelle Properties with an Antioxidant Additive: A Molecular Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4611-4621. [PMID: 33843215 PMCID: PMC8895413 DOI: 10.1021/acs.langmuir.1c00290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In this work, we characterize the micellization and morphology transition induced in aqueous cetyltrimethylammonium bromide (CTAB) solution by the addition of the antioxidant propyl gallate (PG) using tensiometry, rheology, and small-angle neutron scattering (SANS) techniques combined with the molecular dynamics (MD) simulation approach. The adsorption of CTAB at the air-water interface in the presence of varying [PG] revealed a progressive decrease in the critical micelle concentration (CMC), while the changes in different interfacial parameters indicated enhancement of the hydrophobicity induced by PG in the CTAB micellar system. The dynamic rheology behavior indicated an increase in the flow viscosity (η) as a function of [PG]. Moreover, the rheological components (storage modulus, G', and loss modulus, G″) depicted the viscoelastic features. SANS measurements depicted the existence of ellipsoidal micelles with varying sizes and aggregation number (Nagg) as a function of [PG] and temperature. Computational simulation performed using density functional theory (DFT) calculations and molecular dynamics (MD) provided an insight into the atomic composition of the examined system. The molecular electrostatic potential (MEP) analysis depicted a close proximity of CTAB, i.e., emphasized favorable interactions between the quaternary nitrogen of CTAB and the hydroxyl group of the PG monomer, further validated by the two-dimensional nuclear Overhauser enhancement spectroscopy (2D-NOESY), which showed the penetration of PG inside the CTAB micelles. In addition, various dynamic properties, viz., the radial distribution function (RDF), the radius of gyration (Rg), and solvent-accessible surface area (SASA), showed a significant microstructural evolution of the ellipsoidal micelles in the examined CTAB-PG system, where the changes in the micellar morphology with a more elongated hydrophobic chain and the increased Rg and SASA values indicated the notable intercalation of PG in the CTAB micelles.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat-395 007, Gujarat, INDIA
| | - Geetha M Sai
- Department of Chemical Engineering, Indian Institute of Technology (IIT), Gandhinagar 382 355, Gujarat, INDIA
| | - Rajni Verma
- Department of Chemistry, Wichita State University (WSU), Wichita, Kansas 67260-0051, USA
| | - Katie R. Mitchell-Koch
- Department of Chemistry, Wichita State University (WSU), Wichita, Kansas 67260-0051, USA
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, INDIA
| | - Vinod Kumar Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, INDIA
| | - Prachi Thareja
- Department of Chemical Engineering, Indian Institute of Technology (IIT), Gandhinagar 382 355, Gujarat, INDIA
| | - Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat-395 007, Gujarat, INDIA
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla road, Surat 395 007, Gujarat, INDIA
| |
Collapse
|