1
|
Ferreira P, Gerbelli BB, Castro-Kochi ACH, Cortez B, Castro FL, Cantero J, Iribarne F, Hamley IW, Alves WA. Exploring the Use of a Lipopeptide in Dipalmitoylphosphatidylcholine Monolayers for Enhanced Detection of Glyphosate in Aqueous Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13583-13595. [PMID: 38907731 PMCID: PMC11223468 DOI: 10.1021/acs.langmuir.4c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
The growing reliance on pesticides for pest management in agriculture highlights the need for new analytical methods to detect these substances in food and water. Our research introduces a SPRWG-(C18H37) lipopeptide (LP) as a functional analog of acetylcholinesterase (AChE) for glyphosate detection in environmental samples using phosphatidylcholine (PC) monolayers. This LP, containing hydrophilic amino acids linked to an 18-carbon aliphatic chain, alters lipid assembly properties, leading to a more flexible system. Changes included reduced molecular area and peak pressure in Langmuir adsorption isotherms. Small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) analyses provided insights into the LP's structural organization within the membrane and its interaction with glyphosate (PNG). Structural and geometric parameters, as derived from in silico molecular dynamics simulations (MD), substantiated the impact of LP on the monolayer structure and the interaction with PNG. Notably, the presence of the LP and glyphosate increased charge transfer resistance, indicating strong adherence of the monolayer to the indium tin oxide (ITO) surface and effective pesticide interaction. A calibration curve for glyphosate concentration adjustment revealed a detection limit (LOD) of 24 nmol L-1, showcasing the high sensitivity of this electrochemical biosensor. This LOD is significantly lower than that of a similar colorimetric biosensor in aqueous media with a detection limit of approximately 0.3 μmol L-1. Such an improvement in sensitivity likely stems from adding a polar residue to the amino acid chain of the LP.
Collapse
Affiliation(s)
- Priscila
S. Ferreira
- Center
for Natural and Human Sciences, Federal
University of ABC, Santo
André 09210-580, Brazil
| | - Barbara B. Gerbelli
- Center
for Natural and Human Sciences, Federal
University of ABC, Santo
André 09210-580, Brazil
| | - Ana C. H. Castro-Kochi
- Center
for Natural and Human Sciences, Federal
University of ABC, Santo
André 09210-580, Brazil
| | - Bruna Cortez
- Center
for Natural and Human Sciences, Federal
University of ABC, Santo
André 09210-580, Brazil
| | - Fabiola L. Castro
- Center
for Natural and Human Sciences, Federal
University of ABC, Santo
André 09210-580, Brazil
| | - Jorge Cantero
- Theoretical
Chemical Physics and Biology Group, Mathematics-DETEMA Department, Faculty of Chemistry, UdelaR, General Flores 2124, Montevideo 11800, Uruguay
| | - Federico Iribarne
- Theoretical
Chemical Physics and Biology Group, Mathematics-DETEMA Department, Faculty of Chemistry, UdelaR, General Flores 2124, Montevideo 11800, Uruguay
| | - Ian W. Hamley
- Department
of Chemistry, University of Reading, Reading RG6 6AD, U.K.
| | - Wendel A. Alves
- Center
for Natural and Human Sciences, Federal
University of ABC, Santo
André 09210-580, Brazil
| |
Collapse
|
2
|
Alvarez AB, Rodríguez PEA, Fidelio GD. Interfacial Aβ fibril formation is modulated by the disorder-order state of the lipids: The concept of the physical environment as amyloid inductor in biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184234. [PMID: 37741307 DOI: 10.1016/j.bbamem.2023.184234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/26/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
The behavior of amphiphilic molecules such as lipids, peptides and their mixtures at the air/water interface allow us to evaluate and visualize the arrangement formed in a confined and controlled surface area. We have studied the surface properties of the zwitterionic DPPC lipid and Aβ(1-40) amyloid peptide in mixed films at different temperatures (from 15 to 40 °C). In this range of temperature the surface properties of pure Aβ(1-40) peptide remained unchanged, whereas DPPC undergoes its characteristic liquid-expanded → liquid-condensed bidimensional phase transition that depends on the temperature and lateral pressure. This particular property of DPPC makes it possible to dynamically study the influence of the lipid phase state on amyloid structure formation at the interface in a continuous, isothermal and abrupt change on the environmental condition. As the mixed film is compressed the fibril-like structure of Aβ(1-40) is triggered specifically in the liquid-expanded region, independently of temperature, and it is selectively excluded from the well-visible liquid condensed domains of DPPC. The Aβ amyloid fibers were visualized by using BAM and AFM and they were Thio T positive. In mixed DPPC/Aβ(1-40) films the condensed domains (in between 11 mN/m to 20 mN/m) become irregular probably due to the fibril-like structures is imposing additional lateral stress sequestering lipid molecules in the surrounding liquid-expanded phase to self-organize into amyloids.
Collapse
Affiliation(s)
- Alain Bolaño Alvarez
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Universidad Nacional de Córdoba, Argentina.
| | - Pablo E A Rodríguez
- Ministerio de Ciencia y Tecnología de la Provincia de Córdoba, Córdoba, Argentina
| | - Gerardo D Fidelio
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
3
|
Hamley IW, Castelletto V. Small-angle scattering techniques for peptide and peptide hybrid nanostructures and peptide-based biomaterials. Adv Colloid Interface Sci 2023; 318:102959. [PMID: 37473606 DOI: 10.1016/j.cis.2023.102959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
The use of small-angle scattering (SAS) in the study of the self-assembly of peptides and peptide conjugates (lipopeptides, polymer-peptide conjugates and others) is reviewed, highlighting selected research that illustrates different methods and analysis techniques. Both small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS) are considered along with examples that exploit their unique capabilities. For SAXS, this includes the ability to perform rapid measurements enabling high throughput or fast kinetic studies and measurements under dilute conditions. For SANS, contrast variation using H2O/D2O mixtures enables the study of peptides interacting with lipids and TR-SANS (time-resolved SANS) studies of exchange kinetics and/or peptide-induced structural changes. Examples are provided of studies measuring form factors of different self-assembled structures (micelles, fibrils, nanotapes, nanotubes etc) as well as structure factors from ordered phases (lyotropic mesophases), peptide gels and hybrid materials such as membranes formed by mixing peptides with polysaccharides or peptide/liposome mixtures. SAXS/WAXS (WAXS: wide-angle x-ray scattering) on peptides and peptide hybrids is also discussed, and the review concludes with a perspective on potential future directions for research in the field.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK.
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| |
Collapse
|
4
|
Zadeh Moslabeh FG, Miar S, Habibi N. In Vitro Self-Assembly of a Modified Diphenylalanine Peptide to Nanofibers Induced by the Eye Absent Enzyme and Alkaline Phosphatase and Its Activity against Breast Cancer Cell Proliferation. ACS APPLIED BIO MATERIALS 2023; 6:164-170. [PMID: 36525564 DOI: 10.1021/acsabm.2c00829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drug-resistant breast cancers such as Triple negative breast cancer (TNBC) do not respond successfully to chemotherapy treatments because they lack the expression of receptor targets. Drug-resistant anti-cancer treatments require innovative approaches to target these cells without relying on the receptors. Intracellular self-assembly of small molecules induced by enzymes is a nanotechnology approach for inhibiting cancer cell growth. In this approach, enzymes will induce the self-assembly of small molecules to nanofibers, which leads to cell death. Here, we investigate the self-assembly of a modified small peptide induced by two different phosphatases: alkaline phosphatase (ALP) and eye absent tyrosine phosphatase (EYA). ALPs are expressed in many adult human tissues and are critical for many cellular functions. EYAs are embryonic enzymes that are over-expressed in drug-resistant breast cancers. We synthesized a small diphenylalanine-based peptide with a tyrosine phosphate end group as the substrate of phosphatase enzymes. Peptides were synthesized with solid phase techniques and were characterized by HPLC and MALDI-TOF. To characterize the self-assembly of peptides exposed to enzymes, different techniques were used such as scattering light intensity, microscopes, and phosphate detection kit. We then determined the toxicity effect of the peptide against normal breast cancer cells, MCF-7, and drug-resistant breast cancer cells, MDA-MB-231. The results showed that the EYA enzyme is able to initiate self-assembly at lower peptide concentration with higher self-assembling intensity compared to ALP. A significant decrease in the TNBC cell number was observed even with a low peptide concentration of 60 μM. These results collectively support the exploration of enzyme self-assembly to treat TNBC.
Collapse
Affiliation(s)
- Forough Ghasem Zadeh Moslabeh
- Nanomedicine Lab, Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Solaleh Miar
- Department of Civil, Environmental, and Biomedical Engineering, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Neda Habibi
- Nanomedicine Lab, Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| |
Collapse
|
5
|
Mendanha K, Bruno Assis Oliveira L, Colherinhas G. Modeling, energetic and structural analysis of peptide membranes formed by arginine and phenylalanine (R2F4R2) using fully atomistic molecular dynamics. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Alves WA, King GM, Guha S. Looking into a crystal ball: printing and patterning self-assembled peptide nanostructures. NANOSCALE 2022; 14:15607-15616. [PMID: 36268821 DOI: 10.1039/d2nr03750e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The solution processability of organic semiconductors and conjugated polymers along with the advent of nanomaterials as conducting inks have revolutionized next-generation flexible consumer electronics. Another equally important class of nanomaterials, self-assembled peptides, heralded as next-generation materials for bioelectronics, have a lot of potential in printed technology. In this minireview, we address the self-assembly process in dipeptides, their application in electronics, and recent progress in three-dimensional printing. The prospect of a generalizable path for nanopatterning self-assembled peptides using ice lithography and its challenges are further discussed.
Collapse
Affiliation(s)
- Wendel A Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09219-580 Santo Andre, Sao Paulo, Brazil
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
- Joint with Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Suchismita Guha
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
7
|
de Almeida AR, de Andrade DX, Colherinhas G. Statistical and energetic analysis of hydrogen bonds in short and long peptide nanotapes/nanofibers using molecular dynamics simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Singh G, Kaur M, Singh M, Kaur H, Kang TS. Spontaneous Fibrillation of Bovine Serum Albumin at Physiological Temperatures Promoted by Hydrolysis-Prone Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10319-10329. [PMID: 34407374 DOI: 10.1021/acs.langmuir.1c01350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This study highlights the role of time-dependent hydrolysis of ionic liquid anion, [BF4]-, of ionic liquid (IL), 1-ethyl-3-methylimidazolium tetrafluoroborate, [C2mim][BF4], which results in ever-changing pH conditions. Such pH changes along with the ionic interactions bring conformational changes in bovine serum albumin (BSA), leading to the formation of amyloid fibers at 37 °C without external control of pH or addition of electrolyte. The fibrillation of BSA occurs spontaneously with the addition of IL; however, the highest growth rate has been observed in aqueous solution of 10% IL (v/v %) among investigated systems. Thioflavin T (ThT) fluorescence emission has been employed to monitor the growth and development of β-sheet content in amyloid fibrils. The structural alterations in BSA have also been investigated using intrinsic fluorescence measurements. Circular dichroism (CD) measurements confirmed the formation of amyloid fibrils. Transmission electron microscopy (TEM) has been explored to establish the morphologies of BSA fibrils at different intervals of time, whereas atomic force microscopy (AFM) has established the helically twisted nature of grown amyloid fibrils. The docking studies have been utilized to understand the insertion of IL ions in different domains of BSA, which along with decreased pH cause the unfolding and growth of BSA into amyloid fibrils. It is expected that the results obtained from this study would help to understand the impact of IL containing [BF4]- anion on protein stability and aggregation along with providing a new platform to control the formation of amyloid fibrils and other biomaterials driven via ionic interactions and alterations in pH.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Chemistry, UGC-Centre for Advance Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Manvir Kaur
- Department of Chemistry, UGC-Centre for Advance Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Manpreet Singh
- Department of Chemistry, UGC-Centre for Advance Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Harmandeep Kaur
- Department of Chemistry, UGC-Centre for Advance Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Tejwant Singh Kang
- Department of Chemistry, UGC-Centre for Advance Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|