1
|
Mantovani M, Damaceno-Rodrigues N, Ronatty G, Segovia R, Pantanali C, Rocha-Santos V, Caldini E, Sogayar M. Which detergent is most suitable for the generation of an acellular pancreas bioscaffold? Braz J Med Biol Res 2024; 57:e13107. [PMID: 39166604 PMCID: PMC11338550 DOI: 10.1590/1414-431x2024e13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 08/23/2024] Open
Abstract
Pancreatic bioengineering is a potential therapeutic alternative for type 1 diabetes (T1D) in which the pancreas is decellularized, generating an acellular extracellular matrix (ECM) scaffold, which may be reconstituted by recellularization with several cell types to generate a bioartificial pancreas. No consensus for an ideal pancreatic decellularization protocol exists. Therefore, we aimed to determine the best-suited detergent by comparing sodium dodecyl sulfate (SDS), sodium deoxycholate (SDC), and Triton X-100 at different concentrations. Murine (n=12) and human pancreatic tissue from adult brain-dead donors (n=06) was harvested in accordance with Institutional Ethical Committee of the University of São Paulo Medical School (CEP-FMUSP) and decellularized under different detergent conditions. DNA content, histological analysis, and transmission and scanning electron microscopy were assessed. The most adequate condition for pancreatic decellularization was found to be 4% SDC, displaying: a) effective cell removal; b) maintenance of extracellular matrix architecture; c) proteoglycans, glycosaminoglycans (GAGs), and collagen fibers preservation. This protocol was extrapolated and successfully applied to human pancreas decellularization. The acellular ECM scaffold generated was recelullarized using human pancreatic islets primary clusters. 3D clusters were generated using 0.5×104 cells and then placed on top of acellular pancreatic slices (25 and 50 μm thickness). These clusters tended to connect to the acellular matrix, with visible cells located in the periphery of the clusters interacting with the ECM network of the bioscaffold slices and continued to produce insulin. This study provided evidence on how to improve and accelerate the pancreas decellularization process, while maintaining its architecture and extracellular structure, aiming at pancreatic bioengineering.
Collapse
Affiliation(s)
- M.C. Mantovani
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
- Divisão Técnica de Apoio ao Ensino, Pesquisa e Inovação (DTAPEPI) - Centro de Biotecnologia e Inovação, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - N.R. Damaceno-Rodrigues
- Departamento de Patologia, Laboratório de Biologia Celular, LIM 59, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - G.T.S. Ronatty
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
| | - R.S. Segovia
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
| | - C.A. Pantanali
- Departamento de Gastroenterologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - V. Rocha-Santos
- Departamento de Gastroenterologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E.G. Caldini
- Departamento de Patologia, Laboratório de Biologia Celular, LIM 59, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M.C. Sogayar
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
2
|
Parekh PY, Patel VI, Khimani MR, Bahadur P. Self-assembly of bile salts and their mixed aggregates as building blocks for smart aggregates. Adv Colloid Interface Sci 2023; 312:102846. [PMID: 36736167 DOI: 10.1016/j.cis.2023.102846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
The present communication offers a comprehensive overview of the self-assembly of bile salts emphasizing their mixed smart aggregates with a variety of amphiphiles. Using an updated literature survey, we have explored the dissimilar interactions of bile salts with different types of surfactants, phospholipids, ionic liquids, drugs, and a variety of natural and synthetic polymers. While assembling this review, special attention was also provided to the potency of bile salts to alter the size/shape of aggregates formed by several amphiphiles to use these aggregates for solubility improvement of medicinally important compounds, active pharmaceutical ingredients, and also to develop their smart delivery vehicles. A fundamental understanding of bile salt mixed aggregates will enable the development of new strategies for improving the bioavailability of drugs solubilized in newly developed potential hosts and to formulate smart aggregates of desired morphology for specific targeted applications. It enriches our existing knowledge of the distinct interactions exerted in mixed systems of bile salts with variety of amphiphiles. By virtue of this, researchers can get innovative ideas to construct novel nanoaggregates from bile salts by incorporating various amphiphiles that serve as a building block for smart aggregates for their numerous industrial applications.
Collapse
Affiliation(s)
- Paresh Y Parekh
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India
| | - Vijay I Patel
- Department of Chemistry, Navyug Science College, Rander Road, Surat 395009, Gujarat, India.
| | - Mehul R Khimani
- Countryside International School, Nr. Bhesan Railway Crossing, CIS Barbodhan Road, Surat 394125, Gujarat, India
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India
| |
Collapse
|
3
|
Zhu D, Zhang Q, Chen Y, Xie M, Li J, Yao S, Li M, Lou Z, Cai Y, Sun X. Mechanochemical preparation of triptolide-loaded self-micelle solid dispersion with enhanced oral bioavailability and improved anti-tumor activity. Drug Deliv 2022; 29:1398-1408. [PMID: 35532137 PMCID: PMC9090408 DOI: 10.1080/10717544.2022.2069879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Triptolide (TP), a compound isolated from a Chinese medicinal herb, possesses potent anti-tumor, immunosuppressive, and anti-inflammatory properties, but was clinically limited due to its poor solubility, bioavailability, and toxicity. Considering the environment-friendly, low-cost mechanochemical techniques and potential dissolution enhancement ability of Na2GA, an amorphous solid dispersion (Na2GA&TP-BM) consisting of TP and Na2GA were well-prepared to address these issues. The performance of Na2GA&TP-BM was improved through ball milling, such as from crystalline state to an amorphous solid dispersion, suitable nano micelle size and surface potential, and increased solubility. This change had a significant improvement of pharmacokinetic behavior in mice and could be able to extend the blood circulation time of the antitumor drug. Moreover, in vitro and in vivo anti-tumor study showed that Na2GA&TP-BM displayed more potent cytotoxicity to tumor cells. The work illustrated an environment-friendly and safe preparation of the TP formulation, which was promising to enhance the oral bioavailability and antitumor ability of TP, might be considered for efficient anticancer therapy.
Collapse
Affiliation(s)
- Dabu Zhu
- First People's Hospital of Linping District, Hangzhou, China
| | - Qiuqin Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yifang Chen
- First People's Hospital of Linping District, Hangzhou, China
| | - Minghua Xie
- First People's Hospital of Linping District, Hangzhou, China
| | - Jianbo Li
- First People's Hospital of Linping District, Hangzhou, China
| | - Shen Yao
- First People's Hospital of Linping District, Hangzhou, China
| | - Ming Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhao Lou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|