1
|
Majee PS, Ohshima H. On Diffusiophoresis of a Soft Particle with a Hydrophobic Inner Core: A Semianalytical Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1469-1479. [PMID: 39772749 DOI: 10.1021/acs.langmuir.4c04525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The current study deals with a theoretical analysis of diffusiophoresis of a soft particle, consisting of a hydrophobic charged rigid core coated with an ion- and fluid-penetrable charged polymer layer suspending in an electrolyte medium in reaction to an applied concentration gradient. The inner core's hydrophobicity is assumed to be characterized by a surface-charge-dependent slip length parameter. Based on a weak particle charge consideration, the governing equations describing the flow phenomena are solved theoretically to deduce a semianalytic general diffusiophoretic mobility expression applied to an arbitrary Debye layer thickness. A closed-form analytic solution is also obtained, which applies to a thin Debye length and low permeable porous layer. The impact of the charge-dependent wettability of the rigid core on the particle's diffusiophoretic motion is analyzed. We found that the inner core's hydrophobicity profoundly influences the particle mobility at a thicker Debye layer with a constant surface charge density when the chemiphoresis and electrophoresis components assist each other. At a fixed ζ-potential, the effect of the hydrophobic core is substantial for a thinner Debye length. In addition, with a critical selection of core and polymer layer charges, mobility reversal is demonstrated by modulating the salt concentration and slip length parameters.
Collapse
Affiliation(s)
- Partha Sarathi Majee
- Department of Mathematics, Birla Institute of Technology Mersa, Ranchi 835215, India
| | - Hiroyuki Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Sciences, 2461 Yamazaki Noda, Chiba 278-8510, Japan
| |
Collapse
|
2
|
Akdeniz B, Wood JA, Lammertink RGH. Diffusiophoretic Behavior of Polyelectrolyte-Coated Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5934-5944. [PMID: 38451220 PMCID: PMC10956496 DOI: 10.1021/acs.langmuir.3c03916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Diffusiophoresis, the movement of particles under a solute concentration gradient, has practical implications in a number of applications, such as particle sorting, focusing, and sensing. For diffusiophoresis in an electrolyte solution, the particle velocity is described by the electrolyte relative concentration gradient and the diffusiophoretic mobility of the particle. The electrolyte concentration, which typically varies throughout the system in space and time, can also influence the zeta potential of particles in space and time. This variation affects the diffusiophoretic behavior, especially when the zeta potential is highly dependent on the electrolyte concentration. In this work, we show that adsorbing a single bilayer (or 4 bilayers) of a polyelectrolyte pair (PDADMAC/PSS) on the surface of microparticles resulted in effectively constant zeta potential values with respect to salt concentration throughout the experimental range of salt concentrations. This allowed a constant potential model for diffusiophoretic transport to describe the experimental observations, which was not the case for uncoated particles in the same electrolyte system. This work highlights the use of simple polyelectrolyte pairs to tune the zeta potential and maintain constant values for precise control of diffusiophoretic transport.
Collapse
Affiliation(s)
- Burak Akdeniz
- Soft Matter, Fluidics and Interfaces,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Jeffery A. Wood
- Soft Matter, Fluidics and Interfaces,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Rob G. H. Lammertink
- Soft Matter, Fluidics and Interfaces,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| |
Collapse
|
3
|
Fan L, Lin J, Yu A, Chang K, Tseng J, Su J, Chang A, Lu S, Lee E. Diffusiophoresis of a Weakly Charged Liquid Metal Droplet. Molecules 2023; 28:molecules28093905. [PMID: 37175315 PMCID: PMC10180433 DOI: 10.3390/molecules28093905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Diffusiophoresis of a weakly charged liquid metal droplet (LMD) is investigated theoretically, motivated by its potential application in drug delivery. A general analytical formula valid for weakly charged condition is adopted to explore the droplet phoretic behavior. We determined that a liquid metal droplet, which is a special category of the conducting droplet in general, always moves up along the chemical gradient in sole chemiphoresis, contrary to a dielectric droplet where the droplet tends to move down the chemical gradient most of the time. This suggests a therapeutic nanomedicine such as a gallium LMD is inherently superior to a corresponding dielectric liposome droplet in drug delivery in terms of self-guiding to its desired destination. The droplet moving direction can still be manipulated via the polarity dependence; however, there should be an induced diffusion potential present in the electrolyte solution under consideration, which spontaneously generates an extra electrophoresis component. Moreover, the smaller the conducting liquid metal droplet is, the faster it moves in general, which means a smaller LMD nanomedicine is preferred. These findings demonstrate the superior features of an LMD nanomedicine in drug delivery.
Collapse
Affiliation(s)
- Leia Fan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jason Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Annie Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kevin Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jessica Tseng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Judy Su
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Amy Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shirley Lu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Eric Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Diffusiophoresis of a moderately charged cylindrical colloidal particle. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Tricoli V, Corinaldesi FF. Colloidal Suspensions Displaying Anomalous Phoretic Behavior: Field and Mobility Reversal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11250-11264. [PMID: 36067519 PMCID: PMC9494749 DOI: 10.1021/acs.langmuir.2c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/27/2022] [Indexed: 06/15/2023]
Abstract
We show that colloidal suspensions that acquire a surface charge by capturing ions from the surrounding solution display unexpected and remarkable phoretic behavior. Depending on suspension volume fraction, a critical zeta potential ζ exists where the effective electrophoretic mobility diverges, becoming virtually infinite. Beyond such critical value, a ζ-range is identified where mobility reversal occurs, i.e., the effective mobility becomes negative. This counterintuitive behavior is due to the salt gradient engendered by phoretic drift of this kind of particles, which capture and release ions (salt), respectively, at the start and the end of the phoretic path. This salt gradient deeply influences the electric field in the bulk electrolyte where the particles migrate: it can make the field vanish, hence the mobility divergence, or even entail inversion of the field, which is reflected in the mobility reversal. These findings should spur new concepts in a variety of traditional and emerging technologies involving, for example, the separation or targeting of colloids as well as in applications where the creation or manipulation of chemical gradients or electric fields in solution is critical.
Collapse
|
6
|
Ohshima H. Diffusiophoresis of a cylindrical colloidal particle oriented parallel to an electrolyte concentration gradient field. Electrophoresis 2022; 44:752-757. [PMID: 35961764 DOI: 10.1002/elps.202200127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
We derive the general expression for the diffusiophoretic mobility of a cylindrical particle oriented parallel to an applied electrolyte concentration gradient field in a symmetrical electrolyte solution. From the general mobility expression as combined with an approximate analytic expression with negligible error for the electric potential distribution around a cylinder, an accurate analytic mobility expression is obtained, which is applicable for arbitrary values of the particle zeta potential and the electrical double layer thickness. It is also found that the low zeta potential approximation is an excellent approximation for low-to-moderate values of the particle zeta potential.
Collapse
Affiliation(s)
- Hiroyuki Ohshima
- Faculty of Pharmaceutical Sciences Tokyo University of Science Noda Chiba Japan
| |
Collapse
|
7
|
Tsai MY, Fan L, Tseng J, Lin J, Tseng A, Lee E. Electrophoresis of a highly charged fluid droplet in dilute electrolyte solutions: Analytical Hückel-type solution. Electrophoresis 2022; 43:1611-1616. [PMID: 35471734 DOI: 10.1002/elps.202200048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
An analytical formula is presented here for the electrophoresis of a dielectric or perfectly conducting fluid droplet with arbitrary surface potentials suspended in a very dilute electrolyte solution. In other words, when the Debye length (κ-1 ) is very large, or κa ≪ $\ll $ 1, where κ is the electrolyte strength and a stands for the droplet radius. This formula can be regarded as an extension of the famous Hückel solution valid for weakly charged rigid particles to arbitrarily charged fluid droplets. The formula reduces successfully to the ones obtained by Booth for a dielectric droplet, and Ohshima for a perfectly conducting droplet, both under Debye-Hückel approximation valid for weakly charged droplets. Moreover, the formula is valid for a gas bubble and a rigid solid particle as well. Classic results obtained by Hückel for a rigid particle are reproduced as well. We found that for a dielectric droplet, the more viscous the droplet is, the faster it moves regardless of its surface potential, contrary to the intuition based on the purely hydrodynamic consideration. For a perfectly conducting liquid droplet, on the other hand, the situation is reversed: The less viscous the droplet is, the faster it moves. The presence or absence of the spinning electric driving force tangent to the droplet surface is found to be responsible for it. As a result, an axisymmetric exterior vortex flow surrounding the droplet is always present for a dielectric liquid droplet, and never there for a conducting liquid droplet.
Collapse
Affiliation(s)
- Meng-Yu Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Leia Fan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jessica Tseng
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jason Lin
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Andy Tseng
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Eric Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Ohshima H. Diffusiophoresis of a moderately charged spherical colloidal particle. Electrophoresis 2022; 43:2260-2266. [DOI: 10.1002/elps.202200035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Hiroyuki Ohshima
- Faculty of Pharmaceutical Sciences Tokyo University of Science Noda Chiba Japan
| |
Collapse
|
9
|
Fan L, Jian E, Chang W, Wu Y, Lin J, Tseng A, Tseng J, Wan R, Yu A, Lee E. Diffusiophoresis in suspensions of highly charged soft particles. Electrophoresis 2022; 43:2227-2233. [DOI: 10.1002/elps.202100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Leia Fan
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| | - Elaine Jian
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| | - Wen‐Chun Chang
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| | - Yvonne Wu
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| | - Jason Lin
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| | - Andy Tseng
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| | - Jessica Tseng
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| | - Renee Wan
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| | - Annie Yu
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| | - Eric Lee
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| |
Collapse
|
10
|
Diffusiophoresis of a Soft Particle as a Model for Biological Cells. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6020024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We derive the general expression for the diffusiophoretic mobility of a soft particle (i.e., polyelectrolyte-coated hard particle) in a concentration gradient of electrolytes for the case in which the particle’s core size is large enough compared with the Debye length. Therefore, the particle surface can be regarded as planar, and the electrolyte concentration gradient is parallel to the core surface. The obtained expression can be applied for arbitrary values of the fixed charge density of the polyelectrolyte layer and the surface charge density of the particle core. We derive approximate analytic mobility expressions for soft particles of three types, i.e., (i) weakly charged soft particles, (ii) soft particles with a thick polyelectrolyte layer, in which the equilibrium electric potential deep inside the polyelectrolyte layer is equal to the Donnan potential, and (iii) soft particles with an uncharged polymer layer of finite thickness.
Collapse
|
11
|
|
12
|
|
13
|
Ohshima H. Ion size effect on the diffusiophoretic mobility of a large colloidal particle. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04954-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Tsai MY, Wu Y, Fan L, Jian E, Lin J, Tseng J, Tseng A, Wan R, Lee E. Analytical solution to dielectric droplet diffusiophoresis under Debye-Hückel approximation. Electrophoresis 2021; 43:495-500. [PMID: 34699611 DOI: 10.1002/elps.202100264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022]
Abstract
A simple analytical formula is obtained for the diffusiophoresis of a dielectric fluid droplet in symmetric binary electrolyte solutions under Debye-Hückel approximation valid for weakly charged droplets. The chemiphoresis is found to yield negative mobilities most of the time for droplets of constant surface charge density, which implies that the droplets tend to move away from the source releasing ionic chemicals. This is undesirable in some practical applications like drug delivery with liposomes in terms of conveying the drug-carrying liposomes to the desired area in the human body releasing specific ionic chemicals utilizing the self-guiding nature of diffusiophoresis. The further involvement of the electrophoresis component, however, may change the scenario via the oriented electric field generated by the induced diffusion potential. The lesson here is that while the impact of the chemiphoresis component is determined by nature and uncontrollable, the electrophoresis component serves as an artificially adjustable factor via choosing droplets with the surface charge of appropriate sign in practical applications. The results here have potential use in practical applications such as drug delivery. The portable simple analytical formula is a powerful asset to experimental researchers and design engineers in colloid science and technology to facilitate their works.
Collapse
Affiliation(s)
- Meng-Yu Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yvonne Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Leia Fan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Elaine Jian
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jason Lin
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jessica Tseng
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Andy Tseng
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Renee Wan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Eric Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Wu Y, Lee E. Diffusiophoresis of a highly charged soft particle normal to a conducting plane. Electrophoresis 2021; 42:2383-2390. [PMID: 33830522 DOI: 10.1002/elps.202100052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/05/2022]
Abstract
Diffusiophoresis of a soft particle in electrolyte solutions normal to a conducting solid plane is investigated theoretically in this study, focusing on the highly charged particle in particular. A pseudo-spectral method based on Chebyshev polynomial is adopted to solve the resultant governing electrokinetic equations. It was found, among other things, that the closer the soft particle is to the plane, the faster it moves in general, provided only the chemiphoresis component of the diffusiophoresis is involved, i.e., no diffusion potential is present. The presence of the conducting plane is found to have three effects upon the particle motion nearby: the geometric boundary confinement effect, the electrostatic mirror-image force analog effect, and the hydrodynamic retarding effect. The enhancement of the double layer polarization by the first two effects leads to the seeming intriguing observation mentioned above. The particle always moves away from the plane in chemiphoresis. If a diffusion potential is present, however, then it is possible to drive the particle toward the plane. The results have potential applications in drug delivery.
Collapse
Affiliation(s)
- Yvonne Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Eric Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|