1
|
Tok K, Ghorbanizamani F, Moulahoum H, Barlas FB, Celik EG, Gürsoy D, Memmedov R, Akcam TI, Turhan K, Zihnioglu F, Timur S. Corona-like nanostructures: Quantum dots meet pleural fluid proteins/peptides for theranostic applications. Colloids Surf B Biointerfaces 2025; 254:114792. [PMID: 40383021 DOI: 10.1016/j.colsurfb.2025.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/21/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
The incorporation of protein and peptide components into nanoparticles is a revolutionary advancement in nanotheranostics, particularly in the domain of personalised medicine. This study delves into the creation of multifunctional theranostic nanoparticles by conjugating quantum dots (QDs) with proteins and peptides sourced from the pleural fluid of lung cancer patients. Our objective is to enhance the targeting and therapeutic potential of QDs through the formation of corona-like nanostructures. Pleural fluids from lung cancer patients were pooled and precipitated to enrich protein and peptide fractions. These enriched fractions, alongside untreated pooled pleural fluid, were utilized to coat QDs, forming corona-like nanostructures. Comprehensive characterization revealed robust interactions between QDs and pleural fluid proteins/peptides, resulting in heightened fluorescence and stability. Targeted in vitro assays on lung cancer cells (A549) and normal epithelial lung cells (BEAS-2B) demonstrated selective cancer cell targeting and improved therapeutic efficacy. Furthermore, combining these nanostructures with radiotherapy markedly increased cancer cell death compared to radiotherapy alone. This pioneering approach underscores the significant potential of pleural fluid-derived protein/peptide-coated QDs in developing targeted, effective multifunctional nanostructures. By leveraging the unique properties of pleural fluid proteins/peptides and QDs, this study opens new avenues for personalized medicine, poised to revolutionize cancer therapy applications.
Collapse
Affiliation(s)
- Kerem Tok
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Türkiye.
| | - Faezeh Ghorbanizamani
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Türkiye
| | - Hichem Moulahoum
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Türkiye
| | - Firat Baris Barlas
- Istanbul University-Cerrahpasa, Institute of Nanotechnology and Biotechnology, Istanbul 34500, Türkiye; Health Biotechnology Joint Research and Applications Center of Excellence, Istanbul 34220, Türkiye
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir 35100, Türkiye
| | - Dilara Gürsoy
- Department of Thoracic Surgery, Faculty of Medicine, Ege University, Izmir 35100, Türkiye
| | - Rza Memmedov
- Department of Thoracic Surgery, Faculty of Medicine, Ege University, Izmir 35100, Türkiye
| | - Tevfik Ilker Akcam
- Department of Thoracic Surgery, Faculty of Medicine, Ege University, Izmir 35100, Türkiye
| | - Kutsal Turhan
- Department of Thoracic Surgery, Faculty of Medicine, Ege University, Izmir 35100, Türkiye
| | - Figen Zihnioglu
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Türkiye
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Türkiye; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Izmir 35100, Türkiye.
| |
Collapse
|
2
|
Gomez NA, Blumel D, Dueñas D, Young B, Hazel M, Yu M. Influence of experimental conditions on the adsorption of disease biomarker proteins to InP/ZnS quantum dots. Anal Biochem 2025; 704:115903. [PMID: 40368225 DOI: 10.1016/j.ab.2025.115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/25/2025] [Accepted: 05/11/2025] [Indexed: 05/16/2025]
Abstract
The spontaneous formation of quantum dot (QD)-protein assemblies in the physiological environment exhibits challenges or benefits for nanomedicine applications. In this study, we investigated the QD-protein assemblies spontaneously formed with the greener water soluble InP/ZnS-COOH QDs and isolated disease biomarker proteins under various environmental conditions, including QDs size, solution pH, incubation time, ionic strength, different salts, as well as the lowest concentrations of the proteins that started the formation of detectable assemblies. It was shown that higher ionic strength or valence charge disrupted the assembly's formation. The basic pH 8.5 facilitated the formation to a greater extent than the pH 7.4 did. The heat shock protein 90-alpha (HSP90α) adsorbed on QDs surface more readily than cytochrome C (CytoC) and lysozyme (Lyz) in the basic environment. Among the three-sized QDs compared, the medium-sized QDs were the most effective in promoting the assemblies' formation. The detectable assemblies started at as low as 0.4 ng/mL of CytoC, 1.0 ng/mL of HSP90α, or 1.8 ng/mL of Lyz, respectively. The findings add insights into how the biomarker proteins interacted with the QDs under different environmental conditions, which promotes the understanding of QD-protein assemblies' collaborative behaviors when they facilitate bioimaging and biomedicine applications.
Collapse
Affiliation(s)
- Nathaniel A Gomez
- Department of Chemistry, Utah Valley University, Orem, UT, USA, 84058
| | - Daniel Blumel
- Department of Chemistry, Utah Valley University, Orem, UT, USA, 84058
| | - Davies Dueñas
- Department of Chemistry, Utah Valley University, Orem, UT, USA, 84058
| | - Bronson Young
- Department of Chemistry, Utah Valley University, Orem, UT, USA, 84058
| | - Matt Hazel
- Department of Chemistry, Utah Valley University, Orem, UT, USA, 84058
| | - Ming Yu
- Department of Chemistry, Utah Valley University, Orem, UT, USA, 84058.
| |
Collapse
|
3
|
Das R, Mohanty P, Dash PP, Mishra S, Bishoyi AK, Mishra L, Prusty L, Behera DP, Dubey D, Mishra M, Sahoo H, Khan MS, Sethi SK, Jali BR. Unveiling the interaction, cytotoxicity and antibacterial potential of pyridine derivatives: an experimental and theoretical approach with bovine serum albumin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4449-4466. [PMID: 39485531 DOI: 10.1007/s00210-024-03541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/12/2024] [Indexed: 11/03/2024]
Abstract
The binding interactions between bovine serum albumin (BSA) and three pyridine derivatives, i.e., 2-(5-bromopyridin-3-yl) acetic acid (L1), 3-bromo-5-nitropyridine (L2) and 2-chloro-4-nitropyridine (L3), have been carried out using UV-Vis and fluorescence spectroscopic methods. Fluorescence intensity quenching is observed by adding L2 and L3 to the BSA solution. The quenched fluorescence emission is due to the static nature. An isothermal titration calorimetry (ITC) experiment shows the binding ability of L1 with BSA. The binding constants are found to be 7.23 ± 0.32 × 105 M-1 for L1. The thermodynamic parameters were calculated from ITC measurements (i.e., ∆H = -2.78 ± 0.08 kcal/mol, ∆G = -5.65 ± 0.25 kcal/mol, and -T∆S = -2.87 ± 0.11 kcal/mol), which indicated that the protein-ligand complex formation between L1 and BSA is mainly due to the hydrogen bonds and van der Waals interactions. Cyclic voltammetry (CV) and structure activity and relationship (SAR) studies have been carried out to establish the relationship between ligands and proteins. Additionally, we conducted an antibacterial assay with gram-positive Staphylococcus aureus, Enterococcus faecalis, and negative bacterial strains Acinetobacter baumannii and Escherichia coli against L1, L2, and L3, aiming to address the challenges posed by the co-existence of multidrug-resistant bacteria. Finally, drosophila is used to test the cytotoxicity of ligands L1, L2, and L3's in vitro.
Collapse
Affiliation(s)
- Rosalin Das
- School of Biotechnology, Gangadhar Meher University, Sambalpur, Odisha, 768001, India
| | - Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India
| | - Pragyan P Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India
| | - Swagatika Mishra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India
| | - Ajit K Bishoyi
- Department of Clinical Hematology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, 751003, India
| | - Lokanath Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Laxmipriya Prusty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Devi P Behera
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Debasmita Dubey
- Medical Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, 751003, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Harekrushna Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Mohd S Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Santosh K Sethi
- School of Biotechnology, Gangadhar Meher University, Sambalpur, Odisha, 768001, India.
| | - Bigyan R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India.
| |
Collapse
|
4
|
Rathee J, Kishore N. Interaction of solid lipid nanoparticles with bovine serum albumin: physicochemical mechanistic insights. Phys Chem Chem Phys 2025; 27:5876-5888. [PMID: 40028927 DOI: 10.1039/d4cp04737k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This study investigates the interaction of solid lipid nanoparticles (SLNs) with the transport protein bovine serum albumin (BSA) in terms of thermodynamic signatures, employing both spectroscopic and calorimetric techniques. When nanoparticles are exposed to biological media, proteins are adsorbed on their surfaces, leading to protein corona formation. Therefore, controlling the formation of the protein corona is essential for in vivo therapeutic efficacy. Although SLNs have previously been explored solely as potential nano-carriers for drug delivery, no prior efforts have been made to study their interactions with biomolecules from a biophysical and mechanistic perspective. SLNs are colloidal dispersions of the solid lipid in an aqueous solution stabilized by surfactants. Herein, a hot emulsification methodology was employed to formulate SLNs, and their interactions with BSA were analyzed. The SLNs were characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques to obtain information on their size, zeta potential, and shape. Fluorescence data suggested the presence of weak interactions between the SLNs and BSA. Static quenching is confirmed using time-correlated single-photon counting (TCSPC) experiments. Differential scanning calorimetric (DSC) and fluorescence spectroscopic experiments suggest the thermal stabilization of BSA by the SLNs. This stabilization results from the enhancement of the secondary structure of the protein without significantly altering the tertiary structure. Isothermal calorimetry (ITC) results suggest weak interactions between the SLNs and BSA, although not in a site-specific manner. Overall, mechanistic insights into lipid nanoparticle-protein interactions obtained from such studies efficiently overcome the hurdles associated with targeted drug delivery.
Collapse
Affiliation(s)
- Jyoti Rathee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
5
|
Yin MM, Yuan YB, Ding X, Hu YJ, Jiang FL. Thermodynamics and models for small nanoparticles upon protein adsorption. Phys Chem Chem Phys 2025; 27:1222-1236. [PMID: 39717949 DOI: 10.1039/d4cp03518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Proteins are some of the most important components in living organisms. When nanoparticles enter a living system, they swiftly interact with proteins to produce the so-called "protein corona", which depicts the adsorption of proteins on large nanoparticles (normally tens to hundreds of nanometers). However, the sizes of small nanoparticles (typically, fluorescent nanomaterials such as quantum dots, noble metal nanoclusters, carbon dots, etc.) are less than 10 nm, which are comparable or even much smaller than those of proteins. Can proteins also adsorb onto the surface of small nanoparticles to form a "protein corona"? In this perspective, the interactions between small nanoparticles with proteins are discussed in detail, including the main characterization methods and thermodynamic mechanisms. The interaction models are summarized. In particular, the concept of a "protein complex" is emphasized.
Collapse
Affiliation(s)
- Miao-Miao Yin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Yi-Bo Yuan
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Xin Ding
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Yan-Jun Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Feng-Lei Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
6
|
Indongo G, Madanan AS, Varghese S, Shkhair AI, Abraham MK, Rajeevan G, Kala AB, George S. Exploring Selective Fluorescence Turn-On Sensing of Caspase-3 with Molybdenum Disulfide Quenched Copper Nanoclusters: FRET Biosensor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61599-61608. [PMID: 39475561 DOI: 10.1021/acsami.4c10967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Sensing caspase-3 activity is essential for understanding the role of apoptosis in cancer dynamics, controlling therapeutic strategies, and improving patient care in cancer treatment. In this study, we demonstrate a highly sensitive recombinant human caspase-3 (rhC3) detection technique in biological fluids. This technique uses a copper nanocluster stabilized with bovine serum albumin (BSA-CuNCs) as a metal-based fluorescent biosensor, conjugated with anti-human caspase-3 (ahC3). To turn its fluorescence off, molybdenum disulfide nanosheets (MoS2 NSs) are added; this partnership is termed ahC3@BSA-CuNCs/MoS2 nanocouple. In the presence of rhC3, the energy transfer process is affected by strong ahC3/rhC3 interactions. When in close proximity, the rhC3 molecules cause detachment of the nanocluster from the MoS2 NS surface by attracting the ahC3 component of the nanocluster. This increases the distance between the nanocluster and quencher with a consequent restoration of intensity. As the concentration of rhC3 increases, the fluorescence intensity of the system also increases. A proportional response is seen in the concentration between 0.1 and 1.3 ng/mL with a very low limit of detection of 2.75 pg/mL and a quantification limit of 8.60 pg/mL. A simple filter paper strip was made to visually identify the presence of rhC3 under UV light.
Collapse
Affiliation(s)
- Geneva Indongo
- Department of Biotechnology, Faculty of Applied Sciences and Technology, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Arathy B Kala
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
- International Inter University Centre for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| |
Collapse
|
7
|
Khatun MA, Sultana F, Saha I, Karmakar P, Gazi HAR, Islam MM, Show B, Mukhopadhyay S. Lentil Extract-Mediated Ag QD Synthesis: Predilection for Albumin Protein Interaction, Antibacterial Activity, and Its Cytotoxicity for Wi-38 and PC-3 Cell Lines. ACS APPLIED BIO MATERIALS 2024; 7:6568-6582. [PMID: 39259615 DOI: 10.1021/acsabm.4c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Recent focus has been directed toward semiconductor nanocrystals owing to their unique physicochemical properties. Nevertheless, the synthesis and characterization of quantum dots (QDs) pose considerable challenges, limiting our understanding of their interactions within a biological environment. This research offers valuable insights into the environmentally friendly production of silver quantum dots (Ag QDs) using lentil extract and clarifies their distinct physicochemical characteristics, previously unexplored to our knowledge. These findings pave the path for potential practical applications. The investigation of the phytochemical-assisted Ag QDs' affinity for BSA demonstrated modest interactions, as shown by the enthalpy and entropy changes as well as the associated Gibbs free energy during their association. Steady-state and time-resolved fluorescence spectroscopy further demonstrated a transient effect involving dynamic quenching, predominantly driven by Forster resonance energy transfer. Additionally, the study highlights the potential broad-spectrum antibacterial activity of Ag QDs (<5 nm, a zeta potential of -3.04 mV), exhibiting a remarkable MIC value of 1 μg/mL against Gram-negative bacteria (E. coli) and 1.65 μg/mL against Gram-positive bacteria (S. aureus). They can readily enter cells and tissues due to their minuscule size and the right chemical environment. They cause intracellular pathway disruption, which leads to cell death. This outcome emphasizes the distinctive biocompatibility of the green-synthesized Ag QDs, which has been confirmed by their MTT assay-based cytotoxicity against the PC-3 and Wi-38 cell lines.
Collapse
Affiliation(s)
- Mst Arjina Khatun
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Farhin Sultana
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Ishita Saha
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Parimal Karmakar
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Harun Al Rasid Gazi
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, West Bengal 700160, India
| | - Md Maidul Islam
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, West Bengal 700160, India
| | - Bibhutibhushan Show
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Subrata Mukhopadhyay
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| |
Collapse
|
8
|
Lu J, Wang T, Yang J, Shen X, Pang H, Sun B, Wang G, Wang C. Multifunctional Self-Assembled Bio-Interfacial Layers for High-Performance Zinc Metal Anodes. Angew Chem Int Ed Engl 2024; 63:e202409838. [PMID: 39058295 DOI: 10.1002/anie.202409838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Rechargeable aqueous zinc-ion (Zn-ion) batteries are widely regarded as important candidates for next-generation energy storage systems for low-cost renewable energy storage. However, the development of Zn-ion batteries is currently facing significant challenges due to uncontrollable Zn dendrite growth and severe parasitic reactions on Zn metal anodes. Herein, we report an effective strategy to improve the performance of aqueous Zn-ion batteries by leveraging the self-assembly of bovine serum albumin (BSA) into a bilayer configuration on Zn metal anodes. BSA's hydrophilic and hydrophobic fragments form unique and intelligent ion channels, which regulate the migration of Zn ions and facilitate their desolvation process, significantly diminishing parasitic reactions on Zn anodes and leading to a uniform Zn deposition along the Zn (002) plane. Notably, the Zn||Zn symmetric cell with BSA as the electrolyte additive demonstrated a stable cycling performance for up to 2400 hours at a high current density of 10 mA cm-2. This work demonstrates the pivotal role of self-assembled protein bilayer structures in improving the durability of Zn anodes in aqueous Zn-ion batteries.
Collapse
Affiliation(s)
- Jiahui Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu Province, P. R. China
| | - Tianyi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu Province, P. R. China
| | - Jian Yang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 330022, Nanchang, Jiangxi Province, P. R. China
| | - Xin Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu Province, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu Province, P. R. China
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, 2007, Broadway, NSW, Australia
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, 2007, Broadway, NSW, Australia
| | - Chengyin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu Province, P. R. China
| |
Collapse
|
9
|
Jiang H, Li L, Li Z, Chu X. Metal-based nanoparticles in antibacterial application in biomedical field: Current development and potential mechanisms. Biomed Microdevices 2024; 26:12. [PMID: 38261085 PMCID: PMC10806003 DOI: 10.1007/s10544-023-00686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
The rise in drug resistance in pathogenic bacteria greatly endangers public health in the post-antibiotic era, and drug-resistant bacteria currently pose a great challenge not only to the community but also to clinical procedures, including surgery, stent implantation, organ transplantation, and other medical procedures involving any open wound and compromised human immunity. Biofilm-associated drug failure, as well as rapid resistance to last-resort antibiotics, necessitates the search for novel treatments against bacterial infection. In recent years, the flourishing development of nanotechnology has provided new insights for exploiting promising alternative therapeutics for drug-resistant bacteria. Metallic agents have been applied in antibacterial usage for several centuries, and the functional modification of metal-based biomaterials using nanotechnology has now attracted great interest in the antibacterial field, not only for their intrinsic antibacterial nature but also for their ready on-demand functionalization and enhanced interaction with bacteria, rendering them with good potential in further translation. However, the possible toxicity of MNPs to the host cells and tissue still hinders its application, and current knowledge on their interaction with cellular pathways is not enough. This review will focus on recent advances in developing metallic nanoparticles (MNPs), including silver, gold, copper, and other metallic nanoparticles, for antibacterial applications, and their potential mechanisms of interaction with pathogenic bacteria as well as hosts.
Collapse
Affiliation(s)
- Hao Jiang
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lingzhi Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhong Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xiang Chu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Emergency, Daping Hospital, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
10
|
Kumar M, Jaiswal VD, Pangam DS, Bhatia P, Kulkarni A, Dongre PM. Biophysical study of DC electric field induced stable formation of albumin-gold nanoparticles corona and curcumin binding. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123469. [PMID: 37778178 DOI: 10.1016/j.saa.2023.123469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Targeted drug delivery (TDD) is a method of delivering optimum concentrations of pharmaceutical substances in the tissue to achieve the desired therapeutic effect. Hence, TDD systems are considered as an emerging strategy to deliver the drug at the specific site of the tissues/cells. The nanoparticle-protein corona as a drug delivery vehicle has demonstrated immense benefits including potential theragnostic, improved pharmacodynamics and targeted drug delivery. In the present investigation, efforts have been to establish stable and functionalized Bovine serum albumin-gold nanoparticle (BSA-GNP) corona (conjugates) using a Direct Current (DC) electric field. With the application of DC electric field (DEF) across the BSA-GNP solution, the formation of BSA-GNP corona/conjugate takes place which was characterized using various biophysical techniques such a Dynamic Light Scattering (DLS), UV Visible spectroscopy, Fluorescence spectroscopy, electrophoresis, etc. Furthermore, the DEF engineered BSA-GNP corona was loaded/interacted with curcumin (CUR). The size of the BSA-GNP corona was increased with increasing DC voltage (5-30 V) at constant concentration of BSA. The strong and stable binding of curcumin with BSA-GNP corona was revealed by the techniques used in the investigation; however, binding affinity of CUR was decreased for 30 V DEF exposed BSA-GNP conjugate. The biocompatible experimental data confirms the nontoxic nature of BSA-GNP corona. This investigation adds a new and novel physical method for the preparation of protein-nanoparticle corona for various applications including drug delivery.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Biophysics, University of Mumbai, Vidyanagari, Santacruz, Mumbai 400098, India
| | - Vinod D Jaiswal
- Department of Biophysics, University of Mumbai, Vidyanagari, Santacruz, Mumbai 400098, India
| | - Dhanashri S Pangam
- Department of Biophysics, University of Mumbai, Vidyanagari, Santacruz, Mumbai 400098, India
| | - Pushpinder Bhatia
- Department of Physics, Guru Nanak College, Sion, Mumbai 400037, India
| | - Amol Kulkarni
- Vasantdada Patil Dental College & Hospital, Kavalpur Sangli 416 306, India
| | - P M Dongre
- Pravara Gramin Education Society's ACS Senior College, Satral, Ta. Rahuri. Dist, Ahmednagar 431711, India(1).
| |
Collapse
|
11
|
Shi Y, Wu Z, Qi M, Liu C, Dong W, Sun W, Wang X, Jiang F, Zhong Y, Nan D, Zhang Y, Li C, Wang L, Bai X. Multiscale Bioresponses of Metal Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310529. [PMID: 38145555 DOI: 10.1002/adma.202310529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Metal nanoclusters (NCs) are well-recognized novel nano-agents that hold great promise for applications in nanomedicine because of their ultrafine size, low toxicity, and high renal clearance. As foreign substances, however, an in-depth understanding of the bioresponses to metal NCs is necessary but is still far from being realized. Herein, this review is deployed to summarize the biofates of metal NCs at various biological levels, emphasizing their multiscale bioresponses at the molecular, cellular, and organismal levels. In the parts-to-whole schema, the interactions between biomolecules and metal NCs are discussed, presenting typical protein-dictated nano-bio interfaces, hierarchical structures, and in vivo trajectories. Then, the accumulation, internalization, and metabolic evolution of metal NCs in the cellular environment and as-imparted theranostic functionalization are demonstrated. The organismal metabolism and transportation processes of the metal NCs are subsequently distilled. Finally, this review ends with the conclusions and perspectives on the outstanding issues of metal NC-mediated bioresponses in the near future. This review is expected to provide inspiration for tailoring the customization of metal NC-based nano-agents to meet practical requirements in different sectors of nanomedicine.
Collapse
Affiliation(s)
- Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Feng Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Di Nan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
12
|
He X, Liu S, Hu X, Huang X, Zhang H, Mao X. Precious metal clusters as fundamental agents in bioimaging usability. Front Chem 2023; 11:1296036. [PMID: 38025077 PMCID: PMC10665568 DOI: 10.3389/fchem.2023.1296036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Fluorescent nanomaterials (NMs) are widely used in imaging techniques in biomedical research. Especially in bioimaging systems, with the rapid development of imaging nanotechnology, precious metal clusters such as Au, Ag, and Cu NMs have emerged with different functional agents for biomedical applications. Compared with traditional fluorescent molecules, precious metal clusters have the advantages of high optical stability, easy regulation of shape and size, and multifunctionalization. In addition, NMs possess strong photoluminescent properties with good photostability, high release rate, and sub-nanometer size. They could be treated as fundamental agents in bioimaging usability. This review summarizes the recent advances in bioimaging utilization, it conveys that metal clusters refer to Au, Ag, and Cu fluorescent clusters and could provide a generalized overview of their full applications. It includes optical property measurement, precious metal clusters in bioimaging systems, and a rare earth element-doped heterogeneous structure illustrated in biomedical imaging with specific examples, that provide new and innovative ideas for fluorescent NMs in the field of bioimaging usability.
Collapse
Affiliation(s)
- Xiaoxiao He
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| | - Shaojun Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xi Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiongyi Huang
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| | - Hehua Zhang
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Sławski J, Maciejewski J, Szukiewicz R, Gieczewska K, Grzyb J. Quantum Dots Assembled with Photosynthetic Antennae on a Carbon Nanotube Platform: A Nanohybrid for the Enhancement of Light Energy Harvesting. ACS OMEGA 2023; 8:41991-42003. [PMID: 37969970 PMCID: PMC10633852 DOI: 10.1021/acsomega.3c07673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
The construction of artificial systems for solar energy harvesting is still a challenge. There needs to be a light-harvesting antenna with a broad absorption spectrum and then the possibility to transfer harvested energy to the reaction center, converting photons into a storable form of energy. Bioinspired and bioderivative elements may help in achieving this aim. Here, we present an option for light harvesting: a nanobiohybrid of colloidal, semiconductor quantum dots (QDs) and natural photosynthetic antennae assembled on the surface of a carbon nanotube. For that, we used QDs of cadmium telluride and cyanobacterial phycobilisome rods (PBSr) or light-harvesting complex II (LHCII) of higher plants. For this nanobiohybrid, we confirmed composition and organization using infrared spectroscopy, X-ray photoelectron spectroscopy, and high-resolution confocal microscopy. Then, we proved that within such an assembly, there is a resonance energy transfer from QD to PBSr or LHCII. When such a nanobiohybrid was further combined with thylakoids, the energy was transferred to photosynthetic reaction centers and efficiently powered the photosystem I reaction center. The presented construct is proof of a general concept, combining interacting elements on a platform of a nanotube, allowing further variation within assembled elements.
Collapse
Affiliation(s)
- Jakub Sławski
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Jan Maciejewski
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Rafał Szukiewicz
- Faculty
of Physics and Astronomy, University of
Wrocław, Maxa Borna
9, 50-204 Wrocław, Poland
| | - Katarzyna Gieczewska
- Department
of Plant Anatomy and Cytology, Institute of Experimental Plant Biology
and Biotechnology, Faculty of Biology, University
of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Grzyb
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
14
|
Gao LX, Hao H, Yu YQ, Chen JL, Chen WQ, Gong ZD, Liu Y, Jiang FL. Protein Labeling Facilitates the Understanding of Protein Corona Formation via Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15275-15284. [PMID: 37853521 DOI: 10.1021/acs.langmuir.3c01986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Once nanoparticles enter into the biological milieu, nanoparticle-biomacromolecule complexes, especially the protein corona, swiftly form, which cause obvious effects on the physicochemical properties of both nanoparticles and proteins. Here, the thermodynamic parameters of the interactions between water-soluble GSH-CdSe/ZnS core/shell quantum dots (GSH-QDs) and human serum albumin (HSA) were investigated with the aid of labeling fluorescence of HSA. It was proved that the labeling fluorescence originating from a fluorophore (BDP-CN for instance) could be used to investigate the interactions between QDs and HSA. Gel electrophoresis displayed that the binding ratio between HSA and QDs was ∼2:1 by direct visualization. Fluorescence resonance energy transfer (FRET) results indicated that the distance between the QDs and the fluorophore BDP-CN in HSA was 7.2 nm, which indicated that the distance from the fluorophore to the surface of the QDs was ∼4.8 nm. Fluorescence correlation spectroscopy (FCS) results showed that HSA formed a monolayer of a protein corona with a thickness of 5.5 nm. According to the spatial structure of HSA, we could speculate that the binding site of QDs was located at the side edge (not the triangular plane) of HSA with an equilateral triangular prism. The elaboration of the thermodynamic parameters, binding ratio, and interaction orientation will highly improve the fundamental understanding of the formation of protein corona. This work has guiding significance for the exploration of the interactions between proteins and nanomaterials.
Collapse
Affiliation(s)
- Lian-Xun Gao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hao Hao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ying-Qi Yu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ji-Lei Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wen-Qi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zuo-Dong Gong
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
15
|
Le N, Chand A, Braun E, Keyes C, Wu Q, Kim K. Interactions between Quantum Dots and G-Actin. Int J Mol Sci 2023; 24:14760. [PMID: 37834208 PMCID: PMC10572542 DOI: 10.3390/ijms241914760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Quantum dots (QDs) are a type of nanoparticle with excellent optical properties, suitable for many optical-based biomedical applications. However, the potential of quantum dots to be used in clinical settings is limited by their toxicity. As such, much effort has been invested to examine the mechanism of QDs' toxicity. Yet, the current literature mainly focuses on ROS- and apoptosis-mediated cell death induced by QDs, which overlooks other aspects of QDs' toxicity. Thus, our study aimed to provide another way by which QDs negatively impact cellular processes by investigating the possibility of protein structure and function modification upon direct interaction. Through shotgun proteomics, we identified a number of QD-binding proteins, which are functionally associated with essential cellular processes and components, such as transcription, translation, vesicular trafficking, and the actin cytoskeleton. Among these proteins, we chose to closely examine the interaction between quantum dots and actin, as actin is one of the most abundant proteins in cells and plays crucial roles in cellular processes and structural maintenance. We found that CdSe/ZnS QDs spontaneously bind to G-actin in vitro, causing a static quenching of G-actin's intrinsic fluorescence. Furthermore, we found that this interaction favors the formation of a QD-actin complex with a binding ratio of 1:2.5. Finally, we also found that CdSe/ZnS QDs alter the secondary structure of G-actin, which may affect G-actin's function and properties. Overall, our study provides an in-depth mechanistic examination of the impact of CdSe/ZnS QDs on G-actin, proposing that direct interaction is another aspect of QDs' toxicity.
Collapse
Affiliation(s)
- Nhi Le
- Department of Biology, Missouri State University, Springfield, MO 65897, USA; (N.L.); (A.C.); (E.B.)
| | - Abhishu Chand
- Department of Biology, Missouri State University, Springfield, MO 65897, USA; (N.L.); (A.C.); (E.B.)
| | - Emma Braun
- Department of Biology, Missouri State University, Springfield, MO 65897, USA; (N.L.); (A.C.); (E.B.)
| | - Chloe Keyes
- Jordan Valley Innovation Center, Springfield, MO 65806, USA; (C.K.); (Q.W.)
| | - Qihua Wu
- Jordan Valley Innovation Center, Springfield, MO 65806, USA; (C.K.); (Q.W.)
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, Springfield, MO 65897, USA; (N.L.); (A.C.); (E.B.)
| |
Collapse
|
16
|
Le N, Kim K. Current Advances in the Biomedical Applications of Quantum Dots: Promises and Challenges. Int J Mol Sci 2023; 24:12682. [PMID: 37628860 PMCID: PMC10454335 DOI: 10.3390/ijms241612682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Quantum dots (QDs) are a type of nanoparticle with exceptional photobleaching-resistant fluorescence. They are highly sought after for their potential use in various optical-based biomedical applications. However, there are still concerns regarding the use of quantum dots. As such, much effort has been invested into understanding the mechanisms behind the behaviors of QDs, so as to develop safer and more biocompatible quantum dots. In this mini-review, we provide an update on the recent advancements regarding the use of QDs in various biomedical applications. In addition, we also discuss# the current challenges and limitations in the use of QDs and propose a few areas of interest for future research.
Collapse
Affiliation(s)
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
| |
Collapse
|
17
|
Chen WQ, Wu WJ, Yu YQ, Liu Y, Jiang FL. New Insights on the Size-Dependent Inhibition of Enzymes by Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37366026 DOI: 10.1021/acs.langmuir.3c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Particle size might affect the inhibition behaviors of gold nanoparticles (AuNPs) on enzyme activity by influencing the density of binding sites (ρ), the association constant (Ka), the steric hindrance of enzymes by AuNPs, the binding orientations of the enzyme on AuNPs, as well as the structural changes of enzymes. In previous studies, the effects of the above-mentioned factors, which could not be ignored in the applications of enzymatic electrochemistry, were often overshadowed by the effects of surface area. In order to study the size effect on the inhibition types and inhibitory ability of enzymes by AuNPs, we investigated the inhibition behaviors of chymotrypsin (ChT) by AuNPs with three different sizes (D1-AuNCs, D3-AuNPs, and D6-AuNPs) under the same surface area concentration. The results showed that both of the inhibition types and the inhibition ability varied with the particle size of AuNPs. D1-AuNCs inhibited ChT noncompetitively, while D3/D6-AuNPs inhibited ChT competitively. Contrary to the common sense, D6-AuNPs showed a weaker inhibitory ability than D3-AuNPs. By means of zeta potential, agarose gel electrophoresis, isothermal titration calorimetry, synchronous fluorescence spectroscopy, and circular dichroism, the mechanism of the weak inhibitory ability of D6-AuNPs was found to be the standing binding orientation caused by the small curvature. This work had certain guiding significance for the biosafety of AuNPs, the development of nanoinhibitors, as well as the applications of AuNPs in enzymatic electrochemistry.
Collapse
Affiliation(s)
- Wen-Qi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wen-Jing Wu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ying-Qi Yu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
18
|
Dillion Lima Cavalcanti I, Humberto Xavier Junior F, Stela Santos Magalhães N, Cajubá de Britto Lira Nogueira M. ISOTHERMAL TITRATION CALORIMETRY (ITC) AS A PROMISING TOOL IN PHARMACEUTICAL NANOTECHNOLOGY. Int J Pharm 2023; 641:123063. [PMID: 37209790 DOI: 10.1016/j.ijpharm.2023.123063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Isothermal titration calorimetry (ITC) is a technique for evaluating the thermodynamic profiles of connection between two molecules, allowing the experimental design of nanoparticles systems with drugs and/or biological molecules. Taking into account the relevance of ITC, we conducted, therefore, an integrative revision of the literature, from 2000 to 2023, on the main purposes of using this technique in pharmaceutical nanotechnology. The search were carried out in the Pubmed, Sciencedirect, Web of Science, and Scifinder databases using the descriptors "Nanoparticles", "Isothermal Titration Calorimetry", and "ITC". We have observed that the ITC technique has been increasingly used in pharmaceutical nanotechnology, seeking to understand the interaction mechanisms in the formation of nanoparticles. Additionally, to understand the behavior of nanoparticles with biological materials (proteins, DNA, cell membranes, among others), thereby helping to understand the behavior of nanocarriers in vivo studies. As a contribution, we intended to reveal the importance of ITC in the laboratory routine, which is itself a quick and easy technique to obtain relevant results that help to optimize the nanosystems formulation process.
Collapse
Affiliation(s)
- Iago Dillion Lima Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil
| | - Francisco Humberto Xavier Junior
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil; Department of Pharmacy, Pharmaceutical Biotechnology Laboratory (BioTecFarm), Federal University of Paraíba (UFPB), Campus I Lot. Cidade Universitaria, PB, 58051-900, Brazil
| | - Nereide Stela Santos Magalhães
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil
| | - Mariane Cajubá de Britto Lira Nogueira
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil; Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória, Federal University of Pernambuco (CAV/UFPE), R. Alto do Reservatório - Alto José Leal, Vitória de Santo Antão - PE, 55608-680, Brazil.
| |
Collapse
|
19
|
Wang Y, Aoki S, Nara K, Kikuchi Y, Jiao Z, Hasebe Y. Shield, Anchor, and Adhesive Roles of Methylene Blue in Tyrosinase Adsorbed on Carbon Felt for a Flow Injection Amperometric Enzyme Biosensor for Phenolic Substrates and Inhibitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4676-4691. [PMID: 36961887 DOI: 10.1021/acs.langmuir.2c03483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Methylene blue (MB) acted as a stabilizer for preventing surface-induced denaturation of tyrosinase (TYR) adsorbed on a carbon felt (CF) surface, which is based on shield and anchor roles preventing the unfavorable conformational change of TYR on the hydrophobic CF surface. Furthermore, MB acted as an effective adhesive for TYR immobilization on CF. The resulting TYR and MB coadsorbed CF (TYR/MB-CF) worked as an excellent working electrode unit in an electrochemical detector in a flow injection amperometric biosensor, which allowed highly sensitive consecutive determination of not only TYR substrates but also competitive inhibitors. Simultaneous adsorption of TYR and MB from their mixed solution was much useful as compared with step-wise separated adsorption of TYR on the MB-adsorbed CF, which suggests that the binding interaction of MB with TYR in the solution phase is important for this phenomenon. Fluorescence and UV-vis spectroscopy revealed that not only electrostatic forces between the cationic MB and anionic amino acid residues of TYR but also hydrophobic interactions via the phenothiazine ring of MB play a principal binding driving force of MB with TYR at the surface of the TYR molecules. Synchronous fluorescence, three-dimensional fluorescence, and circular dichroism (CD) spectroscopy clarified that the conformation and the secondary structure of TYR slightly changed upon the MB binding, implying that MB binding leads to the modification of the original intramolecular bonding in part.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering, University of Science and Technology LiaoNing, Anshan, LiaoNing 114501, China
| | - Shiori Aoki
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Kazuyuki Nara
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Yugo Kikuchi
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Zeting Jiao
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Yasushi Hasebe
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| |
Collapse
|
20
|
Sebastian A, Aarya, Sarangi BR, Sen Mojumdar S. Lysozyme protected copper nano-cluster: A photo-switch for the selective sensing of Fe2+. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Mahapatra A, Barik S, Satish L, Chakraborty M, Sarkar M. Assessing the Suitability of a Dicationic Ionic Liquid as a Stabilizing Material for the Storage of DNA in Aqueous Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14857-14868. [PMID: 36394977 DOI: 10.1021/acs.langmuir.2c02530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The present study has been undertaken with an objective to find out a suitable medium for the long-term stability and storage of the ct-DNA structure in aqueous solution. For this purpose, the potential of a pyrrolidinium-based dicationic ionic liquid (DIL) in stabilizing ct-DNA structure has been investigated by following the DNA-DIL interaction. Additionally, in order to understand the fundamental aspects regarding the DNA-DIL interaction in a comprehensive manner, studies are also done by employing structurally similar monocationic ionic liquids (MILs). The investigations have been carried out both at ensemble-average and single molecular level by using various spectroscopic techniques. The molecular docking study has also been performed to throw more light into the experimental observations. The combined steady-state and time-resolved fluorescence, fluorescence correlation spectroscopy, and circular dichroism measurements have demonstrated that DILs can effectively be used as better storage media for ct-DNA as compared to MILs. Investigations have also shown that the extra electrostatic interaction between the cationic head group of DIL and the phosphate backbone of DNA is primarily responsible for providing better stabilization to ct-DNA, retaining its native structure in aqueous medium. The outcomes of the present study are also expected to provide valuable insights in designing new polycationic IL systems that can be used in nucleic acid-based applications.
Collapse
Affiliation(s)
- Amita Mahapatra
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai400094, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar752050, Odisha, India
| | - Sahadev Barik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai400094, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar752050, Odisha, India
| | - Lakkoji Satish
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai400094, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar752050, Odisha, India
| | - Manjari Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai400094, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar752050, Odisha, India
| | - Moloy Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai400094, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar752050, Odisha, India
| |
Collapse
|
22
|
New TEMPO-Appended 2,2'-Bipyridine-Based Eu(III), Tb(III), Gd(III) and Sm(III) Complexes: Synthesis, Photophysical Studies and Testing Photoluminescence-Based Bioimaging Abilities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238414. [PMID: 36500504 PMCID: PMC9739109 DOI: 10.3390/molecules27238414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Linked to Alzheimer's disease (AD), amyloids and tau-protein are known to contain a large number of cysteine (Cys) residues. In addition, certain levels of some common biogenic thiols (cysteine (Cys), homocysteine (Hcy), glutathione (GSH), etc.) in biological fluids are closely related to AD as well as other diseases. Therefore, probes with a selective interaction with the above-mentioned thiols can be used for the monitoring and visualizing changes of (bio)thiols in the biological fluids as well as in the brain of animal models of Alzheimer's disease. In this study, new Eu(III), Tb(III), Gd(III) and Sm(III) complexes of 2,2'-bipyridine ligands containing TEMPO fragments as receptor units for (bio)thiols are reported. The presence of free radical fragments of the ligand in the complexes was proved by using the electronic paramagnetic resonance (EPR) method. Among all the complexes, the Eu(III) complex turned out to be the most promising one as luminescence- and spin-probe for the detection of biogenic thiols. The EPR and fluorescent titration methods showed the interaction of the resulting complex with free Cys and GSH in solution. To study the practical applicability of the probes for the monitoring of AD in-vivo, by using the above-mentioned Eu(III)-based probe, the staining of the brain of mice with amyloidosis and Vero cell cultures supplemented with the cysteine-enriched medium was studied as well as the fluorescence titration of Bovine Serum Albumin, BSA (as the model for the thiol moieties containing protein), was carried out. Based on the results of fluorescence titration, the formation of a non-covalent inclusion complex between the above-mentioned Eu(III) complex and BSA was suggested.
Collapse
|
23
|
Packirisamy V, Pandurangan P. Interaction of Atomically Precise Thiolated Copper Nanoclusters with Proteins: A Comparative Study. ACS OMEGA 2022; 7:42550-42559. [PMID: 36440105 PMCID: PMC9685744 DOI: 10.1021/acsomega.2c06011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
A facile synthesis of glutathione-stabilized copper nanoclusters (CuNCs) is carried out in H2O/ tetrahydrofuran medium. The photophysical and morphological studies performed with as-synthesized CuNCs revealed the formation of green-emissive, stable, and smaller nanoclusters. The precise composition of these as-synthesized CuNCs was predicted with the aid of electrospray ionization mass spectrometry analysis as Cu12(SG)9. Furthermore, the systematic studies of the interaction of synthesized CuNCs with three plasmatic proteins, namely, bovine serum albumin (BSA), lysozyme (Lys), and hemoglobin (Hb) have been performed by using a series of spectroscopic studies. The conformational changes in these proteins upon interacting with CuNCs and their binding stoichiometries have been investigated from the combination of UV-visible and steady-state fluorescence measurements. The changes in the microenvironment of proteins caused by CuNCs were investigated by circular dichroism spectroscopy. Among these three proteins, BSA and Lys had a minor effect on the luminescence of CuNCs, which makes them suitable candidates for biological applications. There are no drastic changes in the microenvironment of NCs as well as proteins because of the possibilities of weak electrostatic and H-bonding interactions of CuNCs with BSA and Lys. The feasibility of strong metallophic interaction between the Fe2+ present in the heme group of Hb and Cu(I) or -S atoms present in the CuNCs brings considerable changes in the photophysical activity of CuNCs and their interactions with Hb. The functional groups on NCs as well as active amino acid residues present in proteins play a crucial role in determining their interactions. This work shed a piece of knowledge on designing NCs for specific biological applications.
Collapse
Affiliation(s)
- Vinitha Packirisamy
- Department of Physical Chemistry,
School of Chemical Science, University of
Madras, Guindy Campus, Chennai, Tamilnadu600 025, India
| | - Prabhu Pandurangan
- Department of Physical Chemistry,
School of Chemical Science, University of
Madras, Guindy Campus, Chennai, Tamilnadu600 025, India
| |
Collapse
|
24
|
Fluorescence “turn-off–on” approach for the detection of niflumic acid and ammonium persulfate using 2,3-dialdehyde starch-cysteine-molybdenum nanoclusters as a nanosensor. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Paper-based device for the selective determination of doxycycline antibiotic based on the turn-on fluorescence of bovine serum albumin-coated copper nanoclusters. Mikrochim Acta 2022; 189:415. [PMID: 36217040 DOI: 10.1007/s00604-022-05509-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/21/2022] [Indexed: 10/17/2022]
Abstract
An enhanced ratiometric fluorescence sensor was built for on-site visual detection of doxycycline (DOX) through the interaction with bovine serum albumin on the surface of red emissive copper nanoclusters. Upon the addition of weakly fluorescent DOX, the red fluorescence from copper nanoclusters gradually decreased through the inner-filter effect (IFE), while a green fluorescence appears and significantly increases, forming an interesting fluorescent isosbestic point, which was assigned to DOX due to sensitization effect of bovine serum albumin. On the basis of this ratiometric fluorescence, the system possessed good limit of detection (LOD) of 45 nM and excellent selectivity for DOX over other tetracyclines. Based on these findings, a paper-based sensor has been fabricated for distinct visual detection of trace DOX and combined with smartphone color recognizer for quantitative detection of DOX (LOD = 83 nM). This method shows broad application prospects in environmental monitoring and food safety.
Collapse
|
26
|
Preeyanka N, Akhuli A, Dey H, Chakraborty D, Rahaman A, Sarkar M. Realization of a Model-Free Pathway for Quantum Dot-Protein Interaction Beyond Classical Protein Corona or Protein Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10704-10715. [PMID: 35970517 DOI: 10.1021/acs.langmuir.2c01789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although in recent times nanoparticles (NPs) are being used in various biological applications, their mechanism of binding interactions still remains hazy. Usually, the binding mechanism is perceived to be mediated through either the protein corona (PC) or protein complex (PCx). Herein, we report that the nanoparticle (NP)-protein interaction can also proceed via a different pathway without forming the commonly observed PC or PCx. In the present study, the NP-protein interaction between less-toxic zinc-silver-indium-sulfide (ZAIS) quantum dots (QDs) and bovine serum albumin (BSA) was investigated by employing spectroscopic and microscopic techniques. Although the analyses of data obtained from fluorescence and thermodynamic studies do indicate the binding between QDs and BSA, they do not provide clear experimental evidence in favor of PC or PCx. Quite interestingly, high-resolution transmission electron microscopy (HRTEM) studies have shown the formation of a new type of species where BSA protein molecules are adsorbed onto some portion of a QD surface rather than the entire surface. To the best of our knowledge, we believe that this is the first direct experimental evidence in favor of a model-free pathway for NP-protein interaction events. Thus, the outcome of the present study, through experimental evidence, clearly suggests that NP-protein interaction can proceed by following a pathway that is different from classical PC and PCx.
Collapse
Affiliation(s)
- Naupada Preeyanka
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| | - Amit Akhuli
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| | - Himani Dey
- School of Biological Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| | - Debabrata Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| | - Abdur Rahaman
- School of Biological Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| | - Moloy Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| |
Collapse
|
27
|
Côa F, Delite FDS, Strauss M, Martinez DST. Toxicity mitigation and biodistribution of albumin corona coated graphene oxide and carbon nanotubes in Caenorhabditis elegans. NANOIMPACT 2022; 27:100413. [PMID: 35940564 DOI: 10.1016/j.impact.2022.100413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
In this work, the toxicity and biodistribution of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (MWCNT) were investigated in Caenorhabditis elegans. Bovine serum albumin (BSA) was selected as a model protein to evaluate the influence of protein corona formation on materials physicochemical properties, colloidal stability, and toxicity. Biological assays were performed to assess the effects of bare and albumin corona coated materials on survival, oxidative stress, intestinal barrier permeability, growth, reproduction, and fertility. Critical alterations in topography, surface roughness and chemistry of GO and MWCNT were observed due to albumin corona formation. These modifications were associated with changes in colloidal stability of materials and prevention of their aggregation and sedimentation in nematode testing medium. Both GO and MWCNT caused damage to nematode survival, growth, reproduction, and fertility, as well as enhanced oxidative stress and permeability of the intestinal barrier. But GO was more toxic than MWCNT to C. elegans, especially at long-term assays. Albumin corona mitigated 100% of acute and chronic effects of MWCNT. In contrast, the negative effects of GO were not completely mitigated; GO inhibited 16.2% of nematode growth, 86.5% of reproduction, and 32.0% of fertility at the highest concentration evaluated (10 mg L-1), while corona coated GO mitigated 50% and 100% of fertility and growth, respectively. Confocal Raman spectroscopy imaging was crucial to point out that bare and albumin corona coated GO and MWCNT crossed the C. elegans intestinal barrier reaching its reproductive organs. However, BSA corona protected the nematodes targeted organs from negative effects from MWCNT and blocked its translocation to other tissues, while coated GO was translocated inside the nematode affecting the functionality of crucial organs. In addition, coated MWCNT was excreted after 2 h of food resumption, whereas coated GO still accumulated in the nematode intestine. Our results demonstrate that the materials different translocation and excretion patterns in C. elegans had a relation to the impaired physiological functions of primary and secondary organs. This work is a contribution towards a better understanding of the impacts of protein corona on the toxicity of graphene oxide and carbon nanotubes; essential information for biological applications and nanosafety.
Collapse
Affiliation(s)
- Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Fabrício de Souza Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
28
|
Rajan D, Rajamanikandan R, Ilanchelian M. Morphological and biophysical insights into the gold nanorods binding interaction of haemoglobin/myoglobin by hybrid spectroscopic approaches with bacterial cytotoxicity evaluation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Wang X, Zhang W. The Janus of Protein Corona on nanoparticles for tumor targeting, immunotherapy and diagnosis. J Control Release 2022; 345:832-850. [PMID: 35367478 DOI: 10.1016/j.jconrel.2022.03.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
Abstract
The therapeutics based on nanoparticles (NPs) are considered as the promising strategy for tumor detection and treatment. However, one of the most challenges is the adsorption of biomolecules on NPs after their exposition to biological medium, leading unpredictable in vivo behaviors. The interactions caused by protein corona (PC) will influence the biological fate of NPs in either negative or positive ways, including (i) blood circulation, accumulation and penetration of NPs at targeting sites, and further cellular uptake in tumor targeting delivery; (ii) interactions between NPs and receptors on immune cells for immunotherapy. Besides, PC on NPs could be utilized as new biomarker in tumor diagnosis by identifying the minor change of protein concentration led by tumor growth and invasion in blood. Herein, the mechanisms of these PC-mediated effects will be introduced. Moreover, the recent advances about the strategies will be reviewed to reduce negative effects caused by PC and/or utilize positive effects of PC on tumor targeting, immunotherapy and diagnosis, aiming to provide a reasonable perspective to recognize PC with their applications.
Collapse
Affiliation(s)
- Xiaobo Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenli Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
30
|
Evaluation of noble metal nanostructure-serum albumin interactions in 2D and 3D systems: Thermodynamics and possible mechanisms. Adv Colloid Interface Sci 2022; 301:102616. [PMID: 35184020 DOI: 10.1016/j.cis.2022.102616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 12/17/2022]
Abstract
In this review, we clearly highlight the importance of the detailed study of the interactions between noble metal colloids (nanoparticles (NPs) and nanoclusters (NCs)) with serum albumins (SAs) due to their rapidly growing presence in biomedical research. Besides the changes in the structure and optical property of SA, we demonstrate that the characteristic localized surface plasmon resonance (LSPR) feature of the colloidal noble metal NPs and the size- and structure-dependent photoluminescence (PL) property of the sub-nanometer sized NCs are also altered differently because of the interactions between them. Namely, for plasmonic NPs - SA interactions the PL quenching of SA (mainly static) is identified, while the SA cause PL enhancement of the ultra-small NCs after complexation. This review summarizes that the thermodynamic nature and the possible mechanisms of the binding processes are dependent partly on the size, morphology, and type of the noble metals, while the chemical structure as well as the charge of the stabilizing ligands have the most dominant effect on the change in optical features. In addition to the thermodynamic data and proposed binding mechanisms provided by three-dimensional spectroscopic techniques, the quantitative and real-time data of "quasi" two-dimensional sensor apparatus should also be considered to provide a comprehensive evaluation on many aspects of the particle/cluster - SA interactions.
Collapse
|
31
|
Babu Busi K, Palanivel M, Kanta Ghosh K, Basu Ball W, Gulyás B, Padmanabhan P, Chakrabortty S. The Multifarious Applications of Copper Nanoclusters in Biosensing and Bioimaging and Their Translational Role in Early Disease Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:301. [PMID: 35159648 PMCID: PMC8839130 DOI: 10.3390/nano12030301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023]
Abstract
Nanoclusters possess an ultrasmall size, amongst other favorable attributes, such as a high fluorescence and long-term colloidal stability, and consequently, they carry several advantages when applied in biological systems for use in diagnosis and therapy. Particularly, the early diagnosis of diseases may be facilitated by the right combination of bioimaging modalities and suitable probes. Amongst several metallic nanoclusters, copper nanoclusters (Cu NCs) present advantages over gold or silver NCs, owing to their several advantages, such as high yield, raw abundance, low cost, and presence as an important trace element in biological systems. Additionally, their usage in diagnostics and therapeutic modalities is emerging. As a result, the fluorescent properties of Cu NCs are exploited for use in optical imaging technology, which is the most commonly used research tool in the field of biomedicine. Optical imaging technology presents a myriad of advantages over other bioimaging technologies, which are discussed in this review, and has a promising future, particularly in early cancer diagnosis and imaging-guided treatment. Furthermore, we have consolidated, to the best of our knowledge, the recent trends and applications of copper nanoclusters (Cu NCs), a class of metal nanoclusters that have been gaining much traction as ideal bioimaging probes, in this review. The potential modes in which the Cu NCs are used for bioimaging purposes (e.g., as a fluorescence, magnetic resonance imaging (MRI), two-photon imaging probe) are firstly delineated, followed by their applications as biosensors and bioimaging probes, with a focus on disease detection.
Collapse
Affiliation(s)
- Kumar Babu Busi
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Gunntur, Andhra Pradesh 522502, India;
| | - Mathangi Palanivel
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522502, India;
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Gunntur, Andhra Pradesh 522502, India;
| |
Collapse
|
32
|
Li X, Ma X, Zhang C, Xu R. A comparative study on the interaction of gold nanoparticles with trypsin and pepsin: thermodynamic perspectives. NEW J CHEM 2022. [DOI: 10.1039/d2nj04020d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study provides accurate and full basic data for clarifying the interaction mechanism of AuNPs with trypsin and pepsin.
Collapse
Affiliation(s)
- Xiangrong Li
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, 601 Jin-sui Road, Hong Qi District, Xinxiang, Henan, 453003, P. R. China
| | - Xiaoyi Ma
- Grade 2018, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Congxiao Zhang
- Grade 2018, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Ruonan Xu
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, 601 Jin-sui Road, Hong Qi District, Xinxiang, Henan, 453003, P. R. China
| |
Collapse
|
33
|
Wen M, Li Y, Zhong W, Li Q, Cao L, Tan LL, Shang L. Interactions of cationic gold nanoclusters with serum proteins and effects on their cellular responses. J Colloid Interface Sci 2021; 610:116-125. [PMID: 34922069 DOI: 10.1016/j.jcis.2021.12.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022]
Abstract
Cationic nanoparticles (NPs) have shown great potential in biological applications owing to their distinct features such as favorable cellular internalization and easy binding to biomolecules. However, our current knowledge of cationic NPs' biological behavior, i.e., NP-protein interactions, is still rather limited. Herein, we choose ultrasmall-sized fluorescent gold nanoclusters (AuNCs) coated by (11-mercaptoundecyl) - N, N, N - trimethylammonium bromide (MUTAB) as representative cationic NPs, and systematically study their interactions with different serum proteins at nano-bio interfaces. By monitoring the fluorescence intensity of MUTAB-AuNCs, all proteins are observed to bind with roughly micromolar affinities to AuNCs and quench their fluorescence. Transient fluorescence spectroscopy, X-ray photoelectron spectroscopy and isothermal titration calorimetry are also adopted to characterize the physicochemical properties of MUTAB-AuNCs after the protein adsorption. Concomitantly, circular dichroism spectroscopy reveals that cationic AuNCs can exert protein-dependent conformational changes of these serum proteins. Moreover, protein adsorption onto cationic AuNCs can significantly influence their cellular responses such as cytotoxicity and uptake efficiency. These results provide important knowledge towards understanding the biological behaviors of cationic nanoparticles, which will be helpful in further designing and utilizing them for safe and efficient biomedical applications.
Collapse
Affiliation(s)
- Mengyao Wen
- Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yixiao Li
- Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Wencheng Zhong
- Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Qingfang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, PR China
| | - Liping Cao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, PR China
| | - Li-Li Tan
- Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Li Shang
- Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
34
|
Grzyb J, Walczewska-Szewc K, Sławski J, Trojnar M. Quantum dot clusters as self-assembled antennae with phycocyanine and phycobilisomes as energy acceptors. Phys Chem Chem Phys 2021; 23:24505-24517. [PMID: 34700331 DOI: 10.1039/d1cp03347f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we investigated an experimental and Monte-Carlo computational characterization of self-assembled antennae built using CdTe colloidal quantum dots (QDs). These clusters provide efficient excitation of phycocyanine (PC) or phycobilisomes (PBSs). PBSs are light-harvesting complexes (LHCs) of cyanobacteria, made of several PC units, organized in disks and rods. Each PC contains three separate cofactors. Therefore, we analyzed variations in multi-donor and multi-acceptor systems. The self-assembled QD clusters were formed mostly by electrostatic interactions, possibly due to the introduction of a positive charge on an originally negatively charged nanoparticle surface. Our results suggest that PC may accept energy from multiple nanoparticles localized at a distance significantly longer than the Förster radius. The excitation transfers between particular nanoparticles with possible delocalization. The maximal energy transfer efficiency was obtained for the PC/PBS : QD ratio from 1 to 20 depending on the QD size. This cannot be fully explained using computational simulations; hence, we discussed the hypothesis and explained the observations. Our self-assembled systems may be considered for possible applications in artificial light-harvesting systems because absorption spectra of QDs are different from the absorption characteristics of PC/PBS. In addition, huge clusters of QDs may effectively increase the optical cross-section of so-created nanohybrids.
Collapse
Affiliation(s)
- Joanna Grzyb
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a str, 50-383 Wrocław, Poland.
| | - Katarzyna Walczewska-Szewc
- Department of Biophysics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5 str., 87-100 Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4 str., 87-100 Toruń, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a str, 50-383 Wrocław, Poland.
| | - Martyna Trojnar
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a str, 50-383 Wrocław, Poland.
| |
Collapse
|
35
|
Luo H, Li B, Liu J, Liu Y, Xiao Q, Huang S. Investigation on conformational variation and fibrillation of human serum albumin affected by molybdenum disulfide quantum dots. Int J Biol Macromol 2021; 190:999-1006. [PMID: 34487782 DOI: 10.1016/j.ijbiomac.2021.08.215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
In this work, binding interaction between molybdenum disulfide quantum dots (MoS2 QDs) and human serum albumin (HSA) was researched deeply to dissect the conformational variation and fibrillation of HSA affected by MoS2 QDs. The results revealed that MoS2 QDs bound strongly with HSA with molar ratio of 1:1 under the joint actions of hydrogen bond and van der Waals force, leading to the static fluorescence quenching of HSA. MoS2 QDs caused the secondary structure transition of HSA from α-helix stepwise to β-turn, β-sheet, and random coil gradually. MoS2 QDs reduced both the molar enthalpy change and the melting temperature of HSA, reducing the thermal stability of HSA significantly. It is worth noting that MoS2 QDs inhibited the fibrillation process of HSA according to the reduced hydrophobic environment and the disturbance of disulfide bonds in HSA network structure. These results reveal the precise binding mechanism of MoS2 QDs with HSA at molecular level, providing indispensable information for the potential application of MoS2 QDs in biological fields.
Collapse
Affiliation(s)
- Huajian Luo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Jiajia Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
36
|
A correlation of thermodynamic parameters with size of copper-chelated albumin aggregates. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Anand SK, Mathew MR, Girish Kumar K. A dual channel optical sensor for biliverdin and bilirubin using glutathione capped copper nanoclusters. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Bapli A, Chatterjee A, Gautam RK, Jana R, Seth D. Modulation of the Protein-Ligand Interaction in the Presence of Graphene Oxide: a Detailed Spectroscopic Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5034-5048. [PMID: 33847123 DOI: 10.1021/acs.langmuir.1c00534] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Several applications of graphene oxide (GO) have been established over the years, and it has the potential to be used as a biomedical material. Studying the effect of GO on protein-ligand (small molecules/drugs) complex systems are vital as the mechanisms involved are not well understood. The interaction of GO on the protein-ligand binding is also vital for the preparation of an effective drug carrier in the bloodstream. In this work, we have tried to explore in details the effect of GO on the interaction between a hydrophilic molecule, namely, 7-(N,N'-diethylamino) coumarin-3-carboxylic acid (7-DCA) with human serum albumin (HSA) by employing multispectroscopic, microscopic, calorimetric, and molecular docking studies. We find out that protein-ligand complexes were placed on the GO surface, and GO gives stability to the protein-ligand complex via hydrogen bonding, electrostatic interactions, hydrophobic interactions, and so forth. Due to the presence of a large surface area in GO, it offers a hydrophobic environment, and as a result, the emission maxima of 7-DCA in the ternary complex is more blue-shifted, and the average lifetime becomes higher compared to the binary system. Circular dichroism spectral studies give information about the conformational changes of HSA in the absence and presence of GO when it forms complex with 7-DCA. The fluorescence lifetime imaging study shows the presence of the 7-DCA/HSA complex on the GO sheet. Molecular docking simulation shows that the closest distance between 7-DCA and HSA is 11.9 Å, and the protein interacted with the ligand through hydrogen bonding, hydrophobic interaction, and so forth.
Collapse
Affiliation(s)
- Aloke Bapli
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801103, India
| | - Aninda Chatterjee
- Laboratoire Énergies & MécaniqueThéorique et Appliquée, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy 54500, France
| | - Rajesh Kumar Gautam
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801103, India
| | - Rabindranath Jana
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801103, India
| | - Debabrata Seth
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801103, India
| |
Collapse
|
39
|
Ermini ML, Voliani V. Antimicrobial Nano-Agents: The Copper Age. ACS NANO 2021; 15:6008-6029. [PMID: 33792292 PMCID: PMC8155324 DOI: 10.1021/acsnano.0c10756] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 05/21/2023]
Abstract
The constant advent of major health threats such as antibacterial resistance or highly communicable viruses, together with a declining antimicrobial discovery, urgently requires the exploration of innovative therapeutic approaches. Nowadays, strategies based on metal nanoparticle technology have demonstrated interesting outcomes due to their intrinsic features. In this scenario, there is an emerging and growing interest in copper-based nanoparticles (CuNPs). Indeed, in their pure metallic form, as oxides, or in combination with sulfur, CuNPs have peculiar behaviors that result in effective antimicrobial activity associated with the stimulation of essential body functions. Here, we present a critical review on the state of the art regarding the in vitro and in vivo evaluations of the antimicrobial activity of CuNPs together with absorption, distribution, metabolism, excretion, and toxicity (ADMET) assessments. Considering the potentiality of CuNPs in antimicrobial treatments, within this Review we encounter the need to summarize the behaviors of CuNPs and provide the expected perspectives on their contributions to infectious and communicable disease management.
Collapse
Affiliation(s)
- Maria Laura Ermini
- Center for Nanotechnology
Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12-56126 Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology
Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12-56126 Pisa, Italy
| |
Collapse
|
40
|
Tong Q, Wu W, Hu J, Wang J, Li K, Dong B, Song B. Dimethyl Sulfoxide-Free and Water-Soluble Fluorescent Probe for Detection of Bovine Serum Albumin Prepared by Ionic Co-assembly of Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4532-4539. [PMID: 33823595 DOI: 10.1021/acs.langmuir.1c00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Detection of bovine serum albumin (BSA) is an important issue in the sense of medical applications and enzymatic reactions; however, the recently developed fluorescent probes require the involvement of dimethyl sulfoxide (DMSO), which may be detrimental to proteins. In this study, we demonstrated a DMSO-free and water-soluble fluorescent probe prepared by ionic co-assembly of amphiphiles. The cationic amphiphile is a newly designed molecule (denoted by DPP-12) bearing a conjugated diketopyrrolopyrrole (DPP) and two tetraphenylethylene groups. It turns out that the fluorescence emission of DPP-12 depends on the amount of anionic amphiphilic sodium dodecyl benzene sulfonate (SDBS). The fluorescence intensity first increases and then decreases with the concentration of SDBS, and each branch presents a linear relationship. BSA consumes SDBS by the formation of complexes, thus leading to an increase of fluorescence intensity of the mixed solution of DPP-12 and SDBS. Therefore, the mixed solution of DPP-12 and SDBS was applied as a fluorescent probe to detect the low concentration of BSA by back-titration. This fluorescent probe does not require DMSO and has good tolerance to metal ions in blood and good photostability. The limit of detection is as low as 940 nM, almost 3 orders of magnitude lower than the content in organisms.
Collapse
Affiliation(s)
- Qin Tong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Weichun Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jianghong Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Junhao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Ke Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Bo Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|