Rachamalla AK, Jana PK, Nagarajan S. Recent Advances in Self-Assembled Naphthalimides: From Molecular Design to Applications.
Chemistry 2025:e202500001. [PMID:
40192614 DOI:
10.1002/chem.202500001]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/27/2025]
Abstract
Naphthalimide-based self-assembled materials have gained significant attention in recent years because of their exceptional versatility and wide range of applications, from sensors and electronics to biomedical. Naphthalimides derivatives, with ease of functionalization and robust photophysical properties, became an ideal platform for creating highly ordered self-assembled architectures with tailored functionalities. This review provides an overall understanding of the recent developments in the synthesis and self-assembly of naphthalimide-based materials, focusing on how self-assembly enhances their performance in various applications. The review examines the role of self-assembly in improving these materials' optical, mechanical, and electronic properties, highlighting their use in sensors for detecting gases, volatile organic compounds (VOCs), and amines. Furthermore, the integration of self-assembled naphthalimides in light-emitting devices, energy-harvesting systems, and fluorescence-based imaging demonstrates their potential in both electronic and biological applications. By analyzing recent developments in molecular design, self-assembly strategies, and applications, this review aims to offer insights into how these materials can be optimized for future technological advancements.
Collapse