1
|
Fan Y, Zhang Y, Sheng L, Chen D, Ma Y, Zhao C, Yang W. UV-Induced Thiol-Ene "Click" Surface Grafting Polymerization on BOPP Substrate and Its Postmodifying for Hydrophilic and Antibacterial Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13908-13920. [PMID: 37737879 DOI: 10.1021/acs.langmuir.3c01448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
This paper proposed a novel and versatile surface modification route by integrating UV light-mediated thiol-ene "click" surface grafting polymerization and postmodification via the reactions of the surface thiol groups. At first, poly(thiol ether) layers with tunable thiol group density, up to 8.2 × 102 ea/nm3 for cross-linked grafting layers, were grafted from biaxially oriented polypropylene (BOPP) film. Then, the surface -SH groups reacted with epoxy compounds to introduce quaternary ammonium salt. With the immobilized quaternary ammonium salt and coordinated Zn2+ ions, the modified film demonstrated 99.98% antibacterial rate against Staphylococcus aureusafter soaking in DI water for 21 days and in a highly alkaline environment (0.1 M NaOH aqueous solution) for 3 days, and the surface water contact angle decreased to 39°. At last, the polymethacrylate chains were also successfully grafted from the surface thiol groups of the cross-linked poly(thiol ether) under visible light irradiation. With 2-(dimethyldodecylammonium) ethyl methacrylate as the grafting monomer, the modified BOPP film had shown a 99.99% antibacterial rate against both Escherichia coliand S. aureus. Meanwhile, with 2-methacryloxyethyl phosphoryl choline as grafting monomer, the modified surface showed an excellent antibioadhesion of living S. aureus, and the surface water contact angle was as low as 48°.
Collapse
Affiliation(s)
- Yuqing Fan
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Zhang
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lin Sheng
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Chen
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhong Ma
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changwen Zhao
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Chu W, Ma Y, Zhang Y, Cao X, Shi Z, Liu Y, Ding X. Significantly improved antifouling capability of silicone rubber surfaces by covalently bonded acrylated agarose towards biomedical applications. Colloids Surf B Biointerfaces 2023; 222:112979. [PMID: 36435025 DOI: 10.1016/j.colsurfb.2022.112979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
Bacteria have the extraordinary ability to adhere to biomaterial surfaces and form multicellular structures known as biofilms, which have a detrimental impact on the performance of medical devices. Herein, an investigation highlighted the effective inhibition of bacteria adhesion and overgrowth on silicone rubber surface by grafting polysaccharide, agarose (AG), to construct hydrophilic and negatively charged surfaces. Because of the strong hydration capacity of agarose, the water contact angle of the modified silicone rubber surfaces was significantly reduced from 107.6 ± 2.7° to 19.3 ± 2.6°, which successfully limited bacterial adherence. Most importantly, the durability and stability of coating were observed after 10 days of simulated dynamic microenvironment in vivo, exhibiting a long service life. This modification method did not compromise biocompatibility of silicone rubber, opening a door to new applications for silicone rubber in the field of biomedical materials.
Collapse
Affiliation(s)
- Wenting Chu
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Yuhong Ma
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Yuning Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Xinjie Cao
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zhongyu Shi
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Ying Liu
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Xuejia Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
3
|
Verma M, Rana A, Vidyasagar KEC, Kalyansundaram D, Saha S. Protein Patterning on Microtextured Polymeric Nano-brush Templates Obtained By Nanosecond Fibre Laser. Macromol Biosci 2022; 22:e2100454. [PMID: 35102705 DOI: 10.1002/mabi.202100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/28/2022] [Indexed: 11/11/2022]
Abstract
Micropatterned polymer brushes have attracted attention in several biomedical areas, i.e., tissue engineering, protein microarray, biosensors etc., for precise arrangement of biomolecules. Herein, we report a facile and scalable approach to create microtextured polymer brushes with the ability to generate different type of protein patterns. Nanosecond fibre laser was exploited to generate micropatterns on polyPEGMA (poly(ethylene glycol) methacrylate) brush modified Ti alloy substrate. Surface initiated atom transfer radical polymerisation was employed to grow PolyPEGMA brush (11-87 nm thick) on Ti alloy surface immobilized with initiator having an initiator density (σ*) of 1.5 initiators/nm2 . Polymer brushes were then selectively laser ablated and their presence on non-textured area was confirmed by atomic force microscopy, fluorescence microscopy and X-ray photoelectron spectroscopy. Spatial orientation of biomolecules was first achieved by non-specific protein adsorption on areas ablated by the laser, via physisorption. Further, patterned brushes of polyPEGMA were modified to activated ester that gave rise to protein conjugation specifically on non-laser ablated brush areas. Moreover, the laser ablated brush modified patterned template was also successfully utilized for generating alternate patterns of bacteria. This promising technique can be further extended to create interesting patterns of several biomolecules which are of great interest to biomedical research community. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Meenakshi Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - Abhishek Rana
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - K E Ch Vidyasagar
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - Dinesh Kalyansundaram
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, India
| |
Collapse
|
4
|
Duan J, Gong Y, Chen D, Ma Y, Song C, Yang W. Radical Homopolymerization of Vinyl Ethers Activated by Li+-π Complexation in the Presence of CH3OLi and LiI. Polym Chem 2022. [DOI: 10.1039/d1py01619a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we develop a direct, thermally initiated radical homopolymerization of vinyl ethers mediated by lithium salts CH3OLi and LiI. In the case of vinyl ether monomers having a...
Collapse
|