1
|
Wang L, Qian G, Wang K, Wu Z, Yan H, Shi L, Zhou T. High-throughput microalgae sorting based on the deterministic lateral displacement technique. J Chromatogr A 2024; 1730:465126. [PMID: 38968661 DOI: 10.1016/j.chroma.2024.465126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Microalgae are a group of photosynthetic organisms that can grow autotrophically, performing photosynthesis to synthesize abundant organic compounds and release oxygen. They are rich in nutritional components and chemical precursors, presenting wide-ranging application prospects. However, potential contamination by foreign strains or bacteria can compromise their analytical applications. Therefore, the obtaining of pure algal strains is crucial for the subsequent analysis and application of microalgae. This study designed a deterministic lateral displacement (DLD) chip with dual input and dual outlet of equal width for the separation of Haematococcus pluvialis and Chlorella vulgaris. Optimal separation parameters were determined through a series of experiments, resulting in a purity of 99.80 % for Chlorella vulgaris and 94.58 % for Haematococcus pluvialis, with recovery rates maintained above 90 %, demonstrating high efficiency. This study provides a reliable foundation for future research and applications of microalgae, which holds considerable significance for the subsequent analysis and utilization of microalgae.
Collapse
Affiliation(s)
- Long Wang
- School of Mechanical and Electrical Engineering, Hainan University, Haikou, Hainan, PR China
| | - Guibiao Qian
- School of Mechanical and Electrical Engineering, Hainan University, Haikou, Hainan, PR China
| | - Kun Wang
- School of Mechanical and Electrical Engineering, Hainan University, Haikou, Hainan, PR China
| | - Zhihao Wu
- School of Mechanical and Electrical Engineering, Hainan University, Haikou, Hainan, PR China; School of Information and Communication Engineering, Hainan University, Haikou, Hainan, PR China
| | - Hong Yan
- School of Mechanical and Electrical Engineering, Hainan University, Haikou, Hainan, PR China
| | - Liuyong Shi
- School of Mechanical and Electrical Engineering, Hainan University, Haikou, Hainan, PR China
| | - Teng Zhou
- School of Mechanical and Electrical Engineering, Hainan University, Haikou, Hainan, PR China.
| |
Collapse
|
2
|
Tokuoka Y, Ishida T. Local Microbubble Removal in Polydimethylsiloxane Microchannel by Balancing Negative and Atmospheric Pressures. MICROMACHINES 2023; 15:37. [PMID: 38258156 PMCID: PMC10819605 DOI: 10.3390/mi15010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
Long-term experiments using organoids and tissues are crucial for drug development. Microfluidic devices have been regularly used in long-term experiments. However, microbubbles often form in these devices, and they may damage and starve cells. A method involving the application of negative pressure has been reported to remove microbubbles from microfluidic devices composed of polydimethylsiloxane; however, negative pressure affects the cells and tissues in microfluidic devices. In this study, a local microbubble removal method was developed using a microfluidic device with 0.5 mm thin polydimethylsiloxane sidewalls. The thin sidewalls counterbalanced the negative and atmospheric pressures, thereby localizing the negative pressure near the negatively pressurized chamber. Microbubbles were removed within 5 mm of the negatively pressurized chamber; however, those in an area 7 mm and more from the chamber were not removed. Using the local removal method, a long-term perfusion test was performed, and no contact was confirmed between the bubbles and the simulated tissue for 72 h.
Collapse
Affiliation(s)
- Yasunori Tokuoka
- Department of Mechanical Engineering, School of Engineering, Institute of Technology, Tokyo 226-8503, Japan
| | - Tadashi Ishida
- Department of Mechanical Engineering, School of Engineering, Institute of Technology, Tokyo 226-8503, Japan
| |
Collapse
|
3
|
Cauli E, Polidoro MA, Marzorati S, Bernardi C, Rasponi M, Lleo A. Cancer-on-chip: a 3D model for the study of the tumor microenvironment. J Biol Eng 2023; 17:53. [PMID: 37592292 PMCID: PMC10436436 DOI: 10.1186/s13036-023-00372-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
The approval of anticancer therapeutic strategies is still slowed down by the lack of models able to faithfully reproduce in vivo cancer physiology. On one hand, the conventional in vitro models fail to recapitulate the organ and tissue structures, the fluid flows, and the mechanical stimuli characterizing the human body compartments. On the other hand, in vivo animal models cannot reproduce the typical human tumor microenvironment, essential to study cancer behavior and progression. This study reviews the cancer-on-chips as one of the most promising tools to model and investigate the tumor microenvironment and metastasis. We also described how cancer-on-chip devices have been developed and implemented to study the most common primary cancers and their metastatic sites. Pros and cons of this technology are then discussed highlighting the future challenges to close the gap between the pre-clinical and clinical studies and accelerate the approval of new anticancer therapies in humans.
Collapse
Affiliation(s)
- Elisa Cauli
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy.
- Accelera Srl, Nerviano, Milan, Italy.
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Simona Marzorati
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
4
|
Delgado P, Oshinowo O, Fay ME, Luna CA, Dissanayaka A, Dorbala P, Ravindran A, Shen L, Myers DR. Universal pre-mixing dry-film stickers capable of retrofitting existing microfluidics. BIOMICROFLUIDICS 2023; 17:014104. [PMID: 36687143 PMCID: PMC9848651 DOI: 10.1063/5.0122771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Integrating microfluidic mixers into lab-on-a-chip devices remains challenging yet important for numerous applications including dilutions, extractions, addition of reagents or drugs, and particle synthesis. High-efficiency mixers utilize large or intricate geometries that are difficult to manufacture and co-implement with lab-on-a-chip processes, leading to cumbersome two-chip solutions. We present a universal dry-film microfluidic mixing sticker that can retrofit pre-existing microfluidics and maintain high mixing performance over a range of Reynolds numbers and input mixing ratios. To attach our pre-mixing sticker module, remove the backing material and press the sticker onto an existing microfluidic/substrate. Our innovation centers around the multilayer use of laser-cut commercially available silicone-adhesive-coated polymer sheets as microfluidic layers to create geometrically complex, easy to assemble designs that can be adhered to a variety of surfaces, namely, existing microfluidic devices. Our approach enabled us to assemble the traditional yet difficult to manufacture "F-mixer" in minutes and conceptually extend this design to create a novel space-saving spiral F-mixer. Computational fluid dynamic simulations and experimental results confirmed that both designs maintained high performance for 0.1 < Re < 10 and disparate input mixing ratios of 1:10. We tested the integration of our system by using the pre-mixer to fluorescently tag proteins encapsulated in an existing microfluidic. When integrated with another microfluidic, our pre-mixing sticker successfully combined primary and secondary antibodies to fluorescently tag micropatterned proteins with high spatial uniformity, unlike a traditional pre-mixing "T-mixer" sticker. Given the ease of this technology, we anticipate numerous applications for point-of-care devices, microphysiological-systems-on-a-chip, and microfluidic-based biomedical research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - D. R. Myers
- Author to whom correspondence should be addressed:
| |
Collapse
|
5
|
Li X, Wang J, Curtin K, Li P. Microfluidic Continuous Flow DNA Fragmentation based on a Vibrating Sharp-tip. MICROFLUIDICS AND NANOFLUIDICS 2022; 26:104. [PMID: 38130602 PMCID: PMC10735211 DOI: 10.1007/s10404-022-02610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2023]
Abstract
Fragmentation of DNA into short fragments is of great importance for detecting and studying DNAs. Current microfluidic methods of DNA fragmentation are either inefficient for generating small fragments or rely on microbubbles. Here, we report a DNA fragmentation method in a 3D-printed microfluidic device, which allows efficient continuous flow fragmentation of genomic DNAs without the need for microbubbles. This method is enabled by localized acoustic streaming induced by a single vibrating sharp-tip. Genomic DNAs were fragmented into 700 to 3000 bp fragments with a low power consumption of ~140 mW. The system demonstrated successful fragmentation under a wide range of flow rates from 1 to 50 μL/min without the need for air bubbles. Finally, the utility of the continuous DNA fragmentation method was demonstrated to accelerate the DNA hybridization process for biosensing. Due to the small footprint, continuous flow and bubble-free operation, and high fragmentation efficiency, this method demonstrated great potential for coupling with other functional microfluidic units to achieve an integrated DNA analysis platform.
Collapse
Affiliation(s)
- Xiaojun Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Kathrine Curtin
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
6
|
Ritt CL, de Souza JP, Barsukov MG, Yosinski S, Bazant MZ, Reed MA, Elimelech M. Thermodynamics of Charge Regulation during Ion Transport through Silica Nanochannels. ACS NANO 2022; 16:15249-15260. [PMID: 36075111 DOI: 10.1021/acsnano.2c06633] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ion-surface interactions can alter the properties of nanopores and dictate nanofluidic transport in engineered and biological systems central to the water-energy nexus. The ion adsorption process, known as "charge regulation", is ion-specific and is dependent on the extent of confinement when the electric double layers (EDLs) between two charged surfaces overlap. A fundamental understanding of the mechanisms behind charge regulation remains lacking. Herein, we study the thermodynamics of charge regulation reactions in 20 nm SiO2 channels via conductance measurements at various concentrations and temperatures. The effective activation energies (Ea) for ion conductance at low concentrations (strong EDL overlap) are ∼2-fold higher than at high concentrations (no EDL overlap) for the electrolytes studied here: LiCl, NaCl, KCl, and CsCl. We find that Ea values measured at high concentrations result from the temperature dependence of viscosity and its influence on ion mobility, whereas Ea values measured at low concentrations result from the combined effects of ion mobility and the enthalpy of cation adsorption to the charged surface. Notably, the Ea for surface reactions increases from 7.03 kJ mol-1 for NaCl to 16.72 ± 0.48 kJ mol-1 for KCl, corresponding to a difference in surface charge of -8.2 to -0.8 mC m-2, respectively. We construct a charge regulation model to rationalize the cation-specific charge regulation behavior based on an adsorption equilibrium. Our findings show that temperature- and concentration-dependent conductance measurements can help indirectly probe the ion-surface interactions that govern transport and colloidal interactions at the nanoscale─representing a critical step forward in our understanding of charge regulation and adsorption phenomena under nanoconfinement.
Collapse
Affiliation(s)
- Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michelle G Barsukov
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Shari Yosinski
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
7
|
Yin J, Meng H, Lin J, Ji W, Xu T, Liu H. Pancreatic islet organoids-on-a-chip: how far have we gone? J Nanobiotechnology 2022; 20:308. [PMID: 35764957 PMCID: PMC9238112 DOI: 10.1186/s12951-022-01518-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus (DM) is a disease caused by dysfunction or disruption of pancreatic islets. The advent and development of microfluidic organoids-on-a-chip platforms have facilitated reproduce of complex and dynamic environment for tissue or organ development and complex disease processes. For the research and treatment of DM, the platforms have been widely used to investigate the physiology and pathophysiology of islets. In this review, we first highlight how pancreatic islet organoids-on-a-chip have improved the reproducibility of stem cell differentiation and organoid culture. We further discuss the efficiency of microfluidics in the functional evaluation of pancreatic islet organoids, such as single-islet-sensitivity detection, long-term real-time monitoring, and automatic glucose adjustment to provide relevant stimulation. Then, we present the applications of islet-on-a-chip technology in disease modeling, drug screening and cell replacement therapy. Finally, we summarize the development and challenges of islet-on-a-chip and discuss the prospects of future research.
Collapse
Affiliation(s)
- Jiaxiang Yin
- Bioland Laboratory, Guangzhou, Guangdong, China.,Guangzhou Laboratory, Guangzhou, Guangdong, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hao Meng
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | | | - Wei Ji
- Bioland Laboratory, Guangzhou, Guangdong, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- Guangzhou Laboratory, Guangzhou, Guangdong, China. .,School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| | - Huisheng Liu
- Bioland Laboratory, Guangzhou, Guangdong, China. .,Guangzhou Laboratory, Guangzhou, Guangdong, China. .,School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Zhao X, Ma C, Park DS, Soper SA, Murphy MC. Air bubble removal: Wettability contrast enabled microfluidic interconnects. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 361:131687. [PMID: 35611132 PMCID: PMC9124586 DOI: 10.1016/j.snb.2022.131687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The presence of air bubbles boosts the shear resistance and causes pressure fluctuation within fluid-perfused microchannels, resulting in possible cell damage and even malfunction of microfluidic devices. Eliminating air bubbles is especially challenging in microscale where the adhesive surface tension force is often dominant over other forces. Here, we present an air bubble removal strategy from a novel surface engineering perspective. A microfluidic port-to-port interconnect was fabricated by modifying the peripheral of the microfluidic ports superhydrophobic, while maintaining the inner polymer microchannels hydrophilic. Such a sharp wettability contrast enabled a preferential fluidic entrance into the easy-wetting microchannels over the non-wetting boundaries of the microfluidic ports, while simultaneously filtering out any incoming air bubbles owing to the existence of port-to-port gaps. This bubble-eliminating capability was consistently demonstrated at varying flow rates and liquid analytes. Compared to equipment-intensive techniques and porous membrane-venting strategies, our wettability contrast-governed strategy provides a simple yet effective route for eliminating air bubbles and simultaneously sealing microfluidic interconnects.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, PR China
- Center for BioModular Multiscale Systems for Precision Medicine, Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Chenbo Ma
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, PR China
| | - Daniel S. Park
- Center for BioModular Multiscale Systems for Precision Medicine, Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Steven A. Soper
- Departments of Chemistry and Mechanical Engineering, University of Kansas, Lawrence, KS 66045, United States
| | - Michael C. Murphy
- Center for BioModular Multiscale Systems for Precision Medicine, Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
9
|
Shakeri A, Jarad NA, Khan S, F Didar T. Bio-functionalization of microfluidic platforms made of thermoplastic materials: A review. Anal Chim Acta 2022; 1209:339283. [PMID: 35569863 DOI: 10.1016/j.aca.2021.339283] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
As a result of their favorable physical and chemical characteristics, thermoplastics have garnered significant interest in the area of microfluidics. The moldable nature of these inexpensive polymers enables easy fabrication, while their durability and chemical stability allow for resistance to high shear stress conditions and functionalization, respectively. This review provides a comprehensive examination several commonly used thermoplastic polymers in the microfluidics space including poly(methyl methacrylate) (PMMA), cyclic olefin polymer (COP) and copolymer (COC), polycarbonates (PC), poly(ethylene terephthalate) (PET), polystyrene (PS), poly(ethylene glycol) (PEG), polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), and polyester. We describe various biofunctionalization strategies applied within thermoplastic microfluidic platforms and their resultant applications. Lastly, emerging technologies with a focus on applying recently developed microfluidic and biofunctionalization strategies into thermoplastic systems are discussed.
Collapse
Affiliation(s)
- Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Noor Abu Jarad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Tohid F Didar
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
10
|
Yang M, Sun N, Luo Y, Lai X, Li P, Zhang Z. Emergence of debubblers in microfluidics: A critical review. BIOMICROFLUIDICS 2022; 16:031503. [PMID: 35757146 PMCID: PMC9217167 DOI: 10.1063/5.0088551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/31/2022] [Indexed: 05/10/2023]
Abstract
Bubbles in microfluidics-even those that appear to be negligibly small-are pervasive and responsible for the failure of many biological and chemical experiments. For instance, they block current conduction, damage cell membranes, and interfere with detection results. To overcome this unavoidable and intractable problem, researchers have developed various methods for capturing and removing bubbles from microfluidics. Such methods are multifarious and their working principles are very different from each other. In this review, bubble-removing methods are divided into two broad categories: active debubblers (that require external auxiliary equipment) and passive debubblers (driven by natural processes). In each category, three main types of methods are discussed along with their advantages and disadvantages. Among the active debubblers, those assisted by lasers, acoustic generators, and negative pressure pumps are discussed. Among the passive debubblers, those driven by buoyancy, the characteristics of gas-liquid interfaces, and the hydrophilic and hydrophobic properties of materials are discussed. Finally, the challenges and prospects of the bubble-removal technologies are reviewed to refer researchers to microfluidics and inspire further investigations in this field.
Collapse
Affiliation(s)
| | - Nan Sun
- School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | | | | | - Peiru Li
- School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhenyu Zhang
- School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
11
|
Bhuiyan NH, Hong JH, Uddin MJ, Shim JS. Artificial Intelligence-Controlled Microfluidic Device for Fluid Automation and Bubble Removal of Immunoassay Operated by a Smartphone. Anal Chem 2022; 94:3872-3880. [PMID: 35179372 DOI: 10.1021/acs.analchem.1c04827] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There have been tremendous innovations in microfluidic clinical diagnostics to facilitate novel point-of-care testing (POCT) over the past decades. However, the automatic operation of microfluidic devices that minimize user intervention still lacks reliability and repeatability because microfluidic errors such as bubbles and incomplete filling pose a major bottleneck in commercializing the microfluidic devices for clinical testing. In this work, for the first time, various states of microfluid were recognized to control immunodiagnostics by artificial intelligence (AI) technology. The developed AI-controlled microfluidic platform was operated via an Android smartphone, along with a low-cost polymer device to effectuate enzyme-linked immunosorbent assay (ELISA). To overcome the limited machine-learning capability of smartphones, the region-of-interest (ROI) cascading and conditional activation algorithms were utilized herein. The developed microfluidic chip was incorporated with a bubble trap to remove any bubbles detected by AI, which helps in preventing false signals during immunoassay, as well as controlling the reagents' movement with an on-chip micropump and valve. Subsequently, the developed immunosensing platform was tested for conducting real ELISA using a single microplate from the 96-well to detect the Human Cardiac Troponin I (cTnI) biomarker, with a detection limit as low as 0.98 pg/mL. As a result, the developed platform can be envisaged as an AI-based revolution in microfluidics for point-of-care clinical diagnosis.
Collapse
Affiliation(s)
- Nabil H Bhuiyan
- Bio-IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul 01897, South Korea
| | - Jun H Hong
- Bio-IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul 01897, South Korea
| | - M Jalal Uddin
- Bio-IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul 01897, South Korea.,BioGeneSys Inc., 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
| | - Joon S Shim
- Bio-IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul 01897, South Korea.,BioGeneSys Inc., 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
| |
Collapse
|
12
|
Tajeddin A, Mustafaoglu N. Design and Fabrication of Organ-on-Chips: Promises and Challenges. MICROMACHINES 2021; 12:1443. [PMID: 34945293 PMCID: PMC8707724 DOI: 10.3390/mi12121443] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
The advent of the miniaturization approach has influenced the research trends in almost all disciplines. Bioengineering is one of the fields benefiting from the new possibilities of microfabrication techniques, especially in cell and tissue culture, disease modeling, and drug discovery. The limitations of existing 2D cell culture techniques, the high time and cost requirements, and the considerable failure rates have led to the idea of 3D cell culture environments capable of providing physiologically relevant tissue functions in vitro. Organ-on-chips are microfluidic devices used in this context as a potential alternative to in vivo animal testing to reduce the cost and time required for drug evaluation. This emerging technology contributes significantly to the development of various research areas, including, but not limited to, tissue engineering and drug discovery. However, it also brings many challenges. Further development of the technology requires interdisciplinary studies as some problems are associated with the materials and their manufacturing techniques. Therefore, in this paper, organ-on-chip technologies are presented, focusing on the design and fabrication requirements. Then, state-of-the-art materials and microfabrication techniques are described in detail to show their advantages and also their limitations. A comparison and identification of gaps for current use and further studies are therefore the subject of the final discussion.
Collapse
Affiliation(s)
- Alireza Tajeddin
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34596, Istanbul, Turkey;
| | - Nur Mustafaoglu
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34596, Istanbul, Turkey;
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla 34596, Istanbul, Turkey
| |
Collapse
|
13
|
Murphy BJ, Luy EA, Panzica KL, Johnson G, Sieben VJ. An Energy Efficient Thermally Regulated Optical Spectroscopy Cell for Lab-on-Chip Devices: Applied to Nitrate Detection. MICROMACHINES 2021; 12:mi12080861. [PMID: 34442483 PMCID: PMC8399308 DOI: 10.3390/mi12080861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022]
Abstract
Reagent-based colorimetric analyzers often heat the fluid under analysis for improved reaction kinetics, whilst also aiming to minimize energy use per measurement. Here, a novel method of conserving heat energy on such microfluidic systems is presented. Our design reduces heat transfer to the environment by surrounding the heated optical cell on four sides with integral air pockets, thereby realizing an insulated and suspended bridge structure. Our design was simulated in COMSOL Multiphysics and verified in a polymethyl methacrylate (PMMA) device. We evaluate the effectiveness of the insulated design by comparing it to a non-insulated cell. For temperatures up to 55 °C, the average power consumption was reduced by 49.3% in the simulation and 40.2% in the experiment. The designs were then characterized with the vanadium and Griess reagent assay for nitrate at 35 °C. Nitrate concentrations from 0.25 µM to 50 µM were tested and yielded the expected linear relationship with a limit of detection of 20 nM. We show a reduction in energy consumption from 195 J to 119 J per 10 min measurement using only 4 µL of fluid. Efficient heating on-chip will have broad applicability to numerous colorimetric assays.
Collapse
Affiliation(s)
- Benjamin J. Murphy
- Department of Electrical and Computer Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3H 4R2, Canada; (B.J.M.); (E.A.L.); (K.L.P.)
| | - Edward A. Luy
- Department of Electrical and Computer Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3H 4R2, Canada; (B.J.M.); (E.A.L.); (K.L.P.)
| | - Katerina L. Panzica
- Department of Electrical and Computer Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3H 4R2, Canada; (B.J.M.); (E.A.L.); (K.L.P.)
| | - Gregory Johnson
- RBR Limited, 359 Terry Fox Drive, Ottawa, ON K2K 2E7, Canada;
| | - Vincent J. Sieben
- Department of Electrical and Computer Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3H 4R2, Canada; (B.J.M.); (E.A.L.); (K.L.P.)
- Correspondence:
| |
Collapse
|
14
|
Sung JH. Multi-organ-on-a-chip for pharmacokinetics and toxicokinetic study of drugs. Expert Opin Drug Metab Toxicol 2021; 17:969-986. [PMID: 33764248 DOI: 10.1080/17425255.2021.1908996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Accurate prediction of pharmacokinetic (PK) and toxicokinetics (TK) of drugs is imperative for successful development of new pharmaceutics. Although conventional in vitro methods for predicting the PK and TK of drugs are well established, limitations still exist and more advanced chip-based in vitro platforms combined with mathematical models can help researchers overcome the limitations. Areas covered: We will review recent progress in the development of multi-organ-on-a-chip platforms for predicting PK and TK of drugs, as well as mathematical approaches that can be combined with these platforms for experiment design, data analysis and in vitro-in vivo extrapolation (IVIVE) for application to humans. Expert opinion: Although there remain some challenges to be addressed, the remarkable progress in the area of multi-organ-on-a-chip in recent years indicate that we will see tangible outcomes that can be utilized in the pharmaceutical industry in near future.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, sejong, Republic of Korea
| |
Collapse
|