1
|
Lévy A, Blanchet V, Bozek J, Cabailh G, De Anda Villa M, Gaudin J, Guilet S, Lamour E, Macé S, Milosavljević AR, Prigent C, Robert E, Steydli S, Trassinelli M, Vernhet D, Amans D. Modulating the surface chemistry of gold nanoparticles produced via laser ablation in liquids by favored oxidative processes in the presence of Br anions. Phys Chem Chem Phys 2025. [PMID: 40013377 DOI: 10.1039/d4cp03586k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
In this study, we explore the influence of bromide anions concentration on the surface chemistry of colloidal gold nanoparticles synthesized via pulsed laser ablation in liquids (PLAL). Using X-ray photoelectron spectroscopy (XPS) in a controlled environment, by probing a beam of free-standing gold nanoparticles, we quantitatively characterize the surface composition of the nanoparticles, revealing that bromide adsorption significantly contributes to surface oxidation independently of counterion type and pH for alkaline solution. Additionally, our findings demonstrate the adjustability of halogen coverage post-synthesis, offering a versatile method for controlling nanoparticle properties.
Collapse
Affiliation(s)
- Anna Lévy
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France.
| | - Valérie Blanchet
- CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), University of Bordeaux, UMR5107, F-33405 Talence, France
| | - John Bozek
- L'Orme des Merisiers, Synchrotron SOLEIL, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Gregory Cabailh
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France.
| | - Manuel De Anda Villa
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France.
| | - Jérôme Gaudin
- CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), University of Bordeaux, UMR5107, F-33405 Talence, France
| | - Stéphane Guilet
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France.
| | - Emily Lamour
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France.
| | - Stéphane Macé
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France.
| | | | - Christophe Prigent
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France.
| | - Emmanuel Robert
- L'Orme des Merisiers, Synchrotron SOLEIL, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Sébastien Steydli
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France.
| | - Martino Trassinelli
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France.
| | - Dominique Vernhet
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France.
| | - David Amans
- Université Claude Bernard Lyon 1, CNRS UMR5306, Institut Lumière Matière, F-69622 Villeurbanne, France
| |
Collapse
|
2
|
Olenik J, Shvalya V, Modic M, Vengust D, Cvelbar U, Walsh JL. Microplasma Controlled Nanogold Sensor for SERS of Aliphatic and Aromatic Explosives with PCA-KNN Recognition. ACS Sens 2025; 10:387-397. [PMID: 39719049 PMCID: PMC11773561 DOI: 10.1021/acssensors.4c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
Nanogold is an emerging material for enhancing surface-enhanced Raman scattering (SERS), which enables the detection of hazardous analytes at trace levels. This study presents a simple, single-step plasma synthesis method to control the size and yield of Au nanoparticles by using plasma-liquid redox chemistry. The pin-based argon plasma reduces the Au3+ precursor in under 5 min, synthesizing Au spherical particles ranging from ∼20 nm at 0.025 mM to ∼90 nm at 1.0 mM, in addition to plate-like particles occurring at concentrations of 0.25-1.0 mM. The enhanced SERS responses correlated with the UV-vis absorption and reflectance profiles, which can be attributed to synergistic plasmonic hotspots created by the sphere-sphere, plate-sphere, and plate-plate nanogold interactions. This nanogold mixture, combined with gold-plated CPU grid pin arrays, facilitated the detection of trace explosives, including aromatic (TNT, TNB, and TNP) and aliphatic (RDX, PETN, and HMX) compounds. We demonstrate that stabler aliphatic analytes, associated with lower vapor pressure (10-8-10-11 atm), exhibit smaller signal fluctuations (RSD ∼ 6-10%) compared to their more volatile (10-5 atm) aromatic (RSD ∼ 12-17%) counterparts at similar analyte concentrations. The calculated limit of detection (LoD) was found to be ∼2-6 nM and ∼600-900 pM for aromatic and aliphatic explosives, respectively. Finally, we show that the poorer performance of aromatic explosives under the same sensing conditions affects SERS-PCA separation, which can then be improved either by a machine learning approach (PCA with k-NN classification) or by consideration of a specific NO2 symmetric stretching fingerprint range.
Collapse
Affiliation(s)
- Jaka Olenik
- York
Plasma Institute, School of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K.
- Department
for Gaseous Electronics F6, Jozef Stefan
Institute, 1000 Ljubljana, Slovenia
| | - Vasyl Shvalya
- Department
for Gaseous Electronics F6, Jozef Stefan
Institute, 1000 Ljubljana, Slovenia
| | - Martina Modic
- Department
for Gaseous Electronics F6, Jozef Stefan
Institute, 1000 Ljubljana, Slovenia
| | - Damjan Vengust
- Department
for Gaseous Electronics F6, Jozef Stefan
Institute, 1000 Ljubljana, Slovenia
| | - Uroš Cvelbar
- Department
for Gaseous Electronics F6, Jozef Stefan
Institute, 1000 Ljubljana, Slovenia
| | - James L. Walsh
- York
Plasma Institute, School of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K.
- Department
for Gaseous Electronics F6, Jozef Stefan
Institute, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Talaikis M, Mikoliunaite L, Gkouzi AM, Petrikaitė V, Stankevičius E, Drabavičius A, Selskis A, Juškėnas R, Niaura G. Multiwavelength SERS of Magneto-Plasmonic Nanoparticles Obtained by Combined Laser Ablation and Solvothermal Methods. ACS OMEGA 2023; 8:49396-49405. [PMID: 38162725 PMCID: PMC10753541 DOI: 10.1021/acsomega.3c08007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
The present study introduces a novel method for the synthesis of magneto-plasmonic nanoparticles (MPNPs) with enhanced functionality for surface-enhanced Raman scattering (SERS) applications. By employing pulsed laser ablation in liquid (PLAL) to synthesize plasmonic nanoparticles and wet chemistry to synthesize magnetic nanoparticles, we successfully fabricated chemically pure hybrid Fe3O4@Au and Fe3O4@Ag nanoparticles. We demonstrated a straightforward approach of an electrostatic attachment of the plasmonic and magnetic parts using positively charged polyethylenimine. The MPNPs displayed high SERS sensitivity and reproducibility, and the magnetic part allowed for the controlled separation of the nanoparticles from the reaction mixture, their subsequent concentration, and their precise deposition onto a specified surface area. Additionally, we fabricated alloy based MPNPs from AgxAu100-x (x = 50 and 80 wt %) targets with distinct localized surface plasmon resonance (LSPR) wavelengths. The compositions, morphologies, and optical properties of the nanoparticles were characterized by using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis spectroscopy, and multiwavelength Raman spectroscopy. A standard SERS marker, 4-mercaptobenzoic acid (4-MBA), validated the enhancement properties of the MPNPs and found an enhancement factor of 2 × 108 for the Fe3O4@Ag nanoparticles at 633 nm excitation. Lastly, we applied MPNP-enhanced Raman spectroscopy for the analysis of the biologically relevant molecule adenine and found a limit of detection of 10-7 M at 785 nm excitation. The integration of PLAL and wet chemical methods enabled the relatively fast and cost-effective production of MPNPs characterized by high SERS sensitivity and signal reproducibility that are required in various fields, including biomedicine, food safety, materials science, security, and defense.
Collapse
Affiliation(s)
- Martynas Talaikis
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Lina Mikoliunaite
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department
of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Aikaterini-Maria Gkouzi
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Vita Petrikaitė
- Department
of Laser Technologies, Center for Physical
Sciences and Technology (FTMC), Savanorių Av. 231, LT-02300 Vilnius, Lithuania
| | - Evaldas Stankevičius
- Department
of Laser Technologies, Center for Physical
Sciences and Technology (FTMC), Savanorių Av. 231, LT-02300 Vilnius, Lithuania
| | - Audrius Drabavičius
- Department
of Characterization of Materials Structure, Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Algirdas Selskis
- Department
of Characterization of Materials Structure, Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Remigijus Juškėnas
- Department
of Characterization of Materials Structure, Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Gediminas Niaura
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Miao R, Bissoli M, Basagni A, Marotta E, Corni S, Amendola V. Data-Driven Predetermination of Cu Oxidation State in Copper Nanoparticles: Application to the Synthesis by Laser Ablation in Liquid. J Am Chem Soc 2023; 145:25737-25752. [PMID: 37907392 PMCID: PMC10690790 DOI: 10.1021/jacs.3c09158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Copper-based nanocrystals are reference nanomaterials for integration into emerging green technologies, with laser ablation in liquid (LAL) being a remarkable technique for their synthesis. However, the achievement of a specific type of nanocrystal, among the whole library of nanomaterials available using LAL, has been until now an empirical endeavor based on changing synthesis parameters and characterizing the products. Here, we started from the bibliographic analysis of LAL synthesis of Cu-based nanocrystals to identify the relevant physical and chemical features for the predetermination of copper oxidation state. First, single features and their combinations were screened by linear regression analysis, also using a genetic algorithm, to find the best correlation with experimental output and identify the equation giving the best prediction of the LAL results. Then, machine learning (ML) models were exploited to unravel cross-correlations between features that are hidden in the linear regression analysis. Although the LAL-generated Cu nanocrystals may be present in a range of oxidation states, from metallic copper to cuprous oxide (Cu2O) and cupric oxide (CuO), in addition to the formation of other materials such as Cu2S and CuCN, ML was able to guide the experiments toward the maximization of the compounds in the greatest demand for integration in sustainable processes. This approach is of general applicability to other nanomaterials and can help understand the origin of the chemical pathways of nanocrystals generated by LAL, providing a rational guideline for the conscious predetermination of laser-synthesis parameters toward the desired compounds.
Collapse
Affiliation(s)
- Runpeng Miao
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Michael Bissoli
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Andrea Basagni
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Ester Marotta
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
5
|
Carotenuto R, Tussellino M, Fusco S, Benvenuto G, Formiggini F, Avallone B, Motta CM, Fogliano C, Netti PA. Adverse Effect of Metallic Gold and Silver Nanoparticles on Xenopus laevis Embryogenesis. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2488. [PMID: 37686995 PMCID: PMC10489621 DOI: 10.3390/nano13172488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Exposure to metal nanoparticles is potentially harmful, particularly when occurring during embryogenesis. In this study, we tested the effects of commercial AuNPs and AgNPs, widely used in many fields for their features, on the early development of Xenopus laevis, an anuran amphibian key model species in toxicity testing. Through the Frog Embryo Teratogenesis Assay-Xenopus test (FETAX), we ascertained that both nanoparticles did not influence the survival rate but induced morphological anomalies like modifications of head and branchial arch cartilages, depigmentation of the dorsal area, damage to the intestinal brush border, and heart rate alteration. The expression of genes involved in the early pathways of embryo development was also modified. This study suggests that both types of nanoparticles are toxic though nonlethal, thus indicating that their use requires attention and further study to better clarify their activity in animals and, more importantly, in humans.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | - Sabato Fusco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy
| | | | - Fabio Formiggini
- Center for Advanced Biomaterials for Health Care (IIT@CRIB), Italian Institute of Technology, 80125 Naples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Chiara Maria Motta
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, 80125 Naples, Italy
| |
Collapse
|
6
|
Xu L, Ma J, Chen D, Gu C, Zhou J, Jiang T. Brush-like gold nanowires-anchored g-C 3N 4 nanosheets with tunable geometry for ultrasensitive and regenerative SERS detection of gaseous molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121732. [PMID: 35985232 DOI: 10.1016/j.saa.2022.121732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/18/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Strapping plasmonic substrate with a reliable ability to anchor molecules and achieve reproducible result provides trustworthy opportunities for flourishing surface-enhanced Raman scattering (SERS) technique. Herein, a facile controllable in-situ anisotropic growth strategy was exploited to anchor gold nanowires (Au NWs) onto two-dimensional g-C3N4 nanosheets (g-C3N4/Au NWs), facilitating a sensitive and recyclable SERS sensor for gaseous analytes. Benefiting from the attractive enrichment effect of the brush-like surface formed by numerous small Au NWs as well as their rich nanotips-mediated enhancement capability, the hybrid substrate showed an outstanding performance in SERS-based detection of trace 4-Aminothiophenol (4-ATP) molecules, demonstrating a monitoring limitation down to 10-8 M even in atmosphere. Satisfyingly, under visible light illumination, the efficient green photocatalytic ability derived from the g-C3N4 supporting matrix rendered reusable capability for the substrate, whose SERS signal was kept at a persistent high level throughout 6 cycles. Attributed to the narrow line width of SERS spectrum, the 4-ATP assay under the interference of 2-naphthalenethiol (2-NAT) was acquired in gas phase and the dependable recovery rates from 85.4 to 93.9% were confirmed as well. Thanks to the intriguing features including excellent sensitivity and recyclability, the g-C3N4/Au NWs substrate proposed here will pave the way toward the potential application of SERS technique in multiplexed gaseous detection.
Collapse
Affiliation(s)
- Lanxin Xu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Jiali Ma
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Dong Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Chenjie Gu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Jun Zhou
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Tao Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
7
|
Shvalya V, Vasudevan A, Modic M, Abutoama M, Skubic C, Nadižar N, Zavašnik J, Vengust D, Zidanšek A, Abdulhalim I, Rozman D, Cvelbar U. Bacterial DNA Recognition by SERS Active Plasma-Coupled Nanogold. NANO LETTERS 2022; 22:9757-9765. [PMID: 36301628 PMCID: PMC9756328 DOI: 10.1021/acs.nanolett.2c02835] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/14/2022] [Indexed: 06/16/2023]
Abstract
It is shown that surface-enhanced Raman spectroscopy (SERS) can identify bacteria based on their genomic DNA composition, acting as a "sample-distinguishing marker". Successful spectral differentiation of bacterial species was accomplished with nanogold aggregates synthesized through single-step plasma reduction of the ionic gold-containing vapored precursor. A high enhancement factor (EF = 107) in truncated coupled plasmonic particulates allowed SERS-probing at nanogram sample quantities. Simulations confirmed the occurrence of the strongest electric field confinement within nanometric gaps between gold dimers/chains from where the molecular fingerprints of bacterial DNA fragments gained photon scattering enhancement. The most prominent Raman modes linked to fundamental base-pair molecular vibrations were deconvoluted and used to proceed with nitrogenous base content estimation. The genomic composition (percentage of guanine-cytosine and adenine-thymine) was successfully validated by third-generation sequencing using nanopore technology, further proving that the SERS technique can be employed to swiftly specify bioentities by the discriminative principal-component statistical approach.
Collapse
Affiliation(s)
- Vasyl Shvalya
- Department
of Gaseous Electronics (F6), Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Aswathy Vasudevan
- Department
of Gaseous Electronics (F6), Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
- Jozef
Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Martina Modic
- Department
of Gaseous Electronics (F6), Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Mohammad Abutoama
- Department
of Electrooptics and Photonics Engineering and the Ilse Katz Center
for Nanoscale Science and Technology, School of Electrical and Computer
Engineering, Ben-Gurion University of the
Negev, Beer Sheba 84105, Israel
| | - Cene Skubic
- Centre
for Functional Genomics and Bio-Chips, Institute of Biochemistry and
Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia
| | - Nejc Nadižar
- Centre
for Functional Genomics and Bio-Chips, Institute of Biochemistry and
Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia
| | - Janez Zavašnik
- Department
of Gaseous Electronics (F6), Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Damjan Vengust
- Department
of Gaseous Electronics (F6), Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Aleksander Zidanšek
- Department
of Gaseous Electronics (F6), Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
- Jozef
Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Ibrahim Abdulhalim
- Department
of Electrooptics and Photonics Engineering and the Ilse Katz Center
for Nanoscale Science and Technology, School of Electrical and Computer
Engineering, Ben-Gurion University of the
Negev, Beer Sheba 84105, Israel
| | - Damjana Rozman
- Centre
for Functional Genomics and Bio-Chips, Institute of Biochemistry and
Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia
| | - Uroš Cvelbar
- Department
of Gaseous Electronics (F6), Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
- Jozef
Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Jankowski K, Jabłońska J, Uznański P, Całuch S, Szybowicz M, Brzozowski R, Ostafin A, Kwaśny M, Tomasik M. Necked gold nanoparticles prepared by submerged alternating current arc discharge in water. RSC Adv 2022; 12:33955-33963. [PMID: 36505693 PMCID: PMC9703297 DOI: 10.1039/d2ra06050g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The article presents the method of producing gold nanoparticles using a high voltage arc discharge of alternating current with a frequency of 50 Hz in distilled water. The equipment necessary to carry out the process is described, including the construction of the reactor and the power source of a very simple design necessary to generate a high-voltage arc discharge between the electrodes. Arc discharge processes were carried out two times for 2 and 5 minutes, respectively, in ambient conditions without thermostating the reactor, at medium temperature varying in the range of 25-70 °C. The obtained gold nanoparticles were examined by means of various analytical techniques such as UV-vis spectroscopy, zeta potential measurement, energy dispersive X-ray analysis (EDS), X-ray diffraction (XRD). The morphology, surface, and size of the obtained nanoparticles were carried out using transmission electron microscopy (HRTEM) and dynamic light scattering (DLS). The concentration of the obtained colloids were determined using the mass spectrometry ICP-MS technique. The results show that high-voltage AC arc discharge is a simple and effective way to obtain stable gold nanoparticles under environmentally friendly conditions at relatively low production costs, and can be considered as an alternative to arc discharge nanoparticles synthesis by means of direct current (DC) methods.
Collapse
Affiliation(s)
- K. Jankowski
- Institute of Nanotechnology and Nanobiology, Jacob of Paradies UniversityChopina St. 52, Bldg. 666-400 Gorzow WielkopolskiPoland,Centre of Molecular and Macromolecular Studies, Polish Academy of SciencesSienkiewicza 112 St.90-363 LodzPoland
| | - J. Jabłońska
- Institute of Nanotechnology and Nanobiology, Jacob of Paradies UniversityChopina St. 52, Bldg. 666-400 Gorzow WielkopolskiPoland,Faculty of Materials Engineering and Technical Physics, Poznan University of TechnologyPiotrowo 3A St.61-138 PoznanPoland
| | - P. Uznański
- Centre of Molecular and Macromolecular Studies, Polish Academy of SciencesSienkiewicza 112 St.90-363 LodzPoland
| | - S. Całuch
- Institute of Nanotechnology and Nanobiology, Jacob of Paradies UniversityChopina St. 52, Bldg. 666-400 Gorzow WielkopolskiPoland
| | - M. Szybowicz
- Faculty of Materials Engineering and Technical Physics, Poznan University of TechnologyPiotrowo 3A St.61-138 PoznanPoland
| | - R. Brzozowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of SciencesSienkiewicza 112 St.90-363 LodzPoland
| | - A. Ostafin
- Institute of Nanotechnology and Nanobiology, Jacob of Paradies UniversityChopina St. 52, Bldg. 666-400 Gorzow WielkopolskiPoland
| | - M. Kwaśny
- Institute of Optoelectronics, Military University of TechnologyKaliskiego 2 St.00-908 WarsawPoland
| | - M. Tomasik
- Institute of Nanotechnology and Nanobiology, Jacob of Paradies UniversityChopina St. 52, Bldg. 666-400 Gorzow WielkopolskiPoland
| |
Collapse
|
9
|
Effect of Laser-Induced Optical Breakdown on the Structure of Bsa Molecules in Aqueous Solutions: An Optical Study. Molecules 2022; 27:molecules27196752. [PMID: 36235285 PMCID: PMC9573762 DOI: 10.3390/molecules27196752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 12/22/2022] Open
Abstract
The influence of laser radiation of a typical surgical laser on the physicochemical properties of the Bovine Serum Albumin (BSA) protein was studied. It was established that the physicochemical characteristics of optical breakdown weakly depend on the concentration of protein molecules. At the same time, the patterns observed for an aqueous solution of BSA irradiated with a laser for different time periods were extremely similar to the classical ones. It was established that after exposure to laser radiation, the optical density of protein solutions increases. At the same time, the intensity of BSA fluorescence due to aromatic amino acid residues decreases insignificantly after exposure to laser radiation. In this case, the position of the excitation and emission maximum does not change, and the shape of the fluorescence spot on 3D maps also does not change significantly. On the Raman spectrum after exposure to laser radiation, a significant decrease in 1570 cm−1 was observed, which indicates the degradation of α-helices and, as a result, partial denaturation of BSA molecules. Partial denaturation did not significantly change the total area of protein molecules, since the refractive index of solutions did not change significantly. However, in BSA solutions, after exposure to laser radiation, the viscosity increased, and the pseudoplasticity of aqueous solutions decreased. In this case, there was no massive damage to the polypeptide chain; on the contrary, when exposed to optical breakdown, intense aggregation was observed, while aggregates with a size of 400 nm or more appeared in the solution. Thus, under the action of optical breakdown induced by laser radiation in a BSA solution, the processes of partial denaturation and aggregation prevail, aromatic amino acid residues are damaged to a lesser extent, and fragmentation of protein molecules is not observed.
Collapse
|
10
|
Kay KE, Batista LMF, Tibbetts KM, Ferri JK. Stability of Uncapped Gold Nanoparticles Produced Via Laser Synthesis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Mellor RD, Uchegbu IF. Ultrasmall-in-Nano: Why Size Matters. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2476. [PMID: 35889699 PMCID: PMC9317835 DOI: 10.3390/nano12142476] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 01/06/2023]
Abstract
Gold nanoparticles (AuNPs) are continuing to gain popularity in the field of nanotechnology. New methods are continuously being developed to tune the particles' physicochemical properties, resulting in control over their biological fate and applicability to in vivo diagnostics and therapy. This review focuses on the effects of varying particle size on optical properties, opsonization, cellular internalization, renal clearance, biodistribution, tumor accumulation, and toxicity. We review the common methods of synthesizing ultrasmall AuNPs, as well as the emerging constructs termed ultrasmall-in-nano-an approach which promises to provide the desirable properties from both ends of the AuNP size range. We review the various applications and outcomes of ultrasmall-in-nano constructs in vitro and in vivo.
Collapse
Affiliation(s)
| | - Ijeoma F. Uchegbu
- School of Pharmacy, University College London (UCL), 29–39 Brunswick Square, London WC1N 1AX, UK;
| |
Collapse
|
12
|
Alheshibri M, Akhtar S, Al Baroot A, Elsayed KA, Al Qahtani HS, Drmosh Q. Template-free single-step preparation of hollow CoO nanospheres using pulsed laser ablation in liquid enviroment. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|