1
|
Zhao X, Xiao S, Yao B, Chen Y, Yu S. DFT-Based Mechanistic Exploration and Application in Photocatalytic Heterojunctions. J Chem Theory Comput 2024; 20:9770-9786. [PMID: 39509594 DOI: 10.1021/acs.jctc.4c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Density functional theory (DFT) is one of the most widely used methods in the field of computational materials and has become an important research method for photocatalytic heterojunctions. Based on the research progress of DFT in the field of photocatalytic heterojunctions, this review introduces three kinds of heterojunction modeling in detail as well as the problems encountered in the construction process and the solutions. It provides a comprehensive review of the calculation methods of important parameters related to photocatalytic heterojunctions. Comparison, analysis, and discussion were conducted on some functional selections and calculation results based on experimental data. Finally, the limitations and shortcomings of DFT in the field of photocatalytic heterojunctions are pointed out. This review will provide valuable guidance for the calculation and analysis of the performance of photocatalytic heterojunctions and help promote the wider application of DFT in the field of photocatalysis.
Collapse
Affiliation(s)
- Xiang Zhao
- College of Material Science and Engineering, North China University of Science and Technology, Hebei, Tangshan 063210, China
| | - Shujuan Xiao
- College of Material Science and Engineering, North China University of Science and Technology, Hebei, Tangshan 063210, China
| | - Bingming Yao
- College of Material Science and Engineering, North China University of Science and Technology, Hebei, Tangshan 063210, China
| | - Yifu Chen
- College of Material Science and Engineering, North China University of Science and Technology, Hebei, Tangshan 063210, China
| | - Shouwu Yu
- College of Material Science and Engineering, North China University of Science and Technology, Hebei, Tangshan 063210, China
| |
Collapse
|
2
|
Zhou M, Jin X, Jia M, Quan D, Liu B, Wei Y, Kong XY, Wen L, Jiang L. Light-Powered Directional Ion Transport via PFN-Br/MoS 2 Heterogeneous Membranes: Band Alignment and Activation Energy Barrier Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39321-39329. [PMID: 39024512 DOI: 10.1021/acsami.4c05901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Biological photoresponsive ion transport systems consistently attract researchers' attention owing to their remarkable functions of harvesting energy from nature and participating in visual perception systems. Designing and constructing artificial light-driven ion transport devices to mimic biological counterparts remains a challenge owing to fabrication limitations in nanoconfined spaces. Herein, a typical conjugated polyelectrolyte (PFN-Br) was assembled onto a laminated MoS2M using simple solution-processing vacuum filtration, resulting in a heterogeneous three- and two-dimensional nanoporous membrane. The designed band alignment between PFN-Br and MoS2 enables effective directional ion transport under irradiation in an equilibrium solution, even against a 30-fold concentration gradient. The staggered energy structure of PFN-Br and MoS2 enhances charge separation and establishes a photogenerated potential as the driving force for ion transport. Additionally, the activation energy barrier for ion transport across the heterogeneous membrane decreased by 60% after light irradiation, considerably improving ion transport flux. The easy fabrication and high performance of the membrane in light-powered ion transport provide promising approaches for designing nanofluidic devices with possible applications in energy conversion, light-enhanced biosensing, and photoresponsive ionic devices.
Collapse
Affiliation(s)
- Min Zhou
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyan Jin
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Meijuan Jia
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Di Quan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Biying Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan Wei
- NMPA Key Laboratory for Dental Materials National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| |
Collapse
|
3
|
Zheng Y, Zhao J, Liang H, Zhao Z, Kan Z. Double-Dipole Induced by Incorporating Nitrogen-Bromine Hybrid Cathode Interlayers Leads to Suppressed Current Leakage and Enhanced Charge Extraction in Non-Fullerene Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302460. [PMID: 37401166 PMCID: PMC10502809 DOI: 10.1002/advs.202302460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Indexed: 07/05/2023]
Abstract
The cathode interlayer plays a vital role in organic solar cells, which can modify the work function of electrodes, lower the electron extraction barriers, smooth the surface of the active layer, and remove solvent residuals. However, the development of organic cathode interlayer lags behind the rapidly improved organic solar cells because their intrinsic high surface tension can lead to poor contact with the active layers. Herein, a double-dipole strategy is proposed to enhance the properties of organic cathode interlayers, which is induced by incorporating nitrogen- and bromine-containing interlayer materials. To verify this approach, the state-of-the-art active layer composed of PM6:Y6 and two prototypical cathode interlayer materials, PDIN and PFN-Br is selected. Using the cathode interlayer PDIN: PFN-Br (0.9:0.1, in wt.%) in the devices can reduce the electrode work function, suppress the dark current leakage, and improve charge extractions, leading to enhanced short circuit current density and fill factor. The bromine ions tend to break from PFN-Br and form a new chemical bond with the silver electrode, which can adsorb extra dipoles directed from the interlayer to silver. These findings on the double-dipole strategy provide insights into the hybrid cathode interlayers for efficient non-fullerene organic solar cells.
Collapse
Affiliation(s)
- Yangchao Zheng
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Jingjing Zhao
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Huanpeng Liang
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Zhenmin Zhao
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Zhipeng Kan
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
- State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresNanning530004China
| |
Collapse
|
4
|
Wang Y, Zhang Z, Xu H, Deng H, Hu M, Yang T, Li J. Optimized Morphology Enables High-Efficiency Nonfullerene Ternary Organic Solar Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:75-82. [PMID: 36525579 DOI: 10.1021/acs.langmuir.2c01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tuning the three-dimensional morphology in the active layer is an effective method to improve the performance of bulk heterojunction organic solar cells (OSCs). In this work, an acceptor-donor-acceptor structured small molecule ST10-CN-1 was synthesized and employed as the guest donor to fabricate ternary OSCs based on a PBDB-T:IT-M host binary system. The incorporation of ST10-CN-1 could broaden the active layer's absorption range of solar light thereby leading to a promotional short-circuit current. Moreover, adding an appropriate amount of ST10-CN-1 could effectively regulate the morphology of the active layer in both the lateral direction and vertical stratification. All of these morphological alterations helped to speed up the exciton dissociation, charge transit, and charge collecting processes, which in turn increased the power conversion efficiency. As a result, an excellent PCE of 11.5% for the ternary device based on PBDB-T:IT-M:ST10-CN-1 was obtained. The enhanced PCE was also linked to the formation of an alloylike state between PBDB-T and ST10-CN-1, as evidenced by the fact that the open circuit voltage of ternary OSCs lay between those for PBDB-T:IT-M (0.925 V) and ST10-CN-1:IT-M (1.064 V). This work illustrates that refining the morphology of the active layer by incorporating an appropriate third component is an effective way to further enhance the device's performance.
Collapse
Affiliation(s)
- Yun Wang
- College of Big Data and Information Engineering, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
| | - Zhengli Zhang
- College of Big Data and Information Engineering, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
- Engineering Research Center of Semiconductor Power Device Reliability, Ministry of Education, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
| | - Haoming Xu
- College of Big Data and Information Engineering, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
| | - Haoyun Deng
- College of Big Data and Information Engineering, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
| | - Mi Hu
- College of Big Data and Information Engineering, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
| | - Ting Yang
- College of Big Data and Information Engineering, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
| | - Junli Li
- College of Big Data and Information Engineering, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
- Engineering Research Center of Semiconductor Power Device Reliability, Ministry of Education, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
| |
Collapse
|
5
|
Li M, Dai S, Wu Y, Zheng L, Cai Y, Ma S, Zhu X, Chen D, Tang B, Yun D. ZnO纳米颗粒/纳米棒复合薄膜用于提升有机太阳能电池的光伏性能. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Tang F, Wu J, Lin Z, Peng X. Glucose and Its Derivatives as Interfacial Materials for Inverted Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16487-16496. [PMID: 35354276 DOI: 10.1021/acsami.2c00735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glucose, a widely distributed biomaterial in nature, is presented as a new cathode interfacial material for highly efficient inverted organic solar cells. The interactions between glucose and the indium tin oxide (ITO) substrate as well as the formation mechanisms of the glucose interlayer were investigated by molecular dynamics simulation and relevant experimental tests. The results revealed that the In-OH coordination between the oxygen atom of glucose and the indium of ITO is the key factor for the formation of interfacial dipoles, thereby reducing the work function of the ITO cathode for efficient charge transfer. With PM6:Y6 as the active layer, the power conversion efficiency (PCE) of the organic solar cells was significantly increased from 1.99 to 15.42% after ITO was modified by a glucose interlayer through the traditional spin-coating method. More importantly, glucose can be adsorbed on the ITO surface by a simple immersion process, and the devices based on the modified ITO by immersed glucose achieved a PCE of 14.48%, which is comparable to that of the traditional spin-coating method. Furthermore, we found that the OSCs with the ITO cathodes modified with glucose derivatives including sorbitol and sodium gluconate by different preparation methods also exhibited high performance. The overall performance of the devices with ITO modified by a simple and low-cost immersion method can be maintained at more than 93% of that prepared with the traditional spin-coating method. The results demonstrated that low-price glucose and its derivatives are good candidates as ITO interlayer materials for OSCs, and the effectiveness of the immersion process paves a way for simplifying the manufacture of low-cost and large-area organic solar cells.
Collapse
Affiliation(s)
- Feng Tang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Jifa Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zhenkun Lin
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
7
|
Wang X, Liu P, Yap B, Xia R, Wong WY, He Z. High-quality WS 2 film as a hole transport layer in high-efficiency non-fullerene organic solar cells. NANOSCALE 2021; 13:16589-16597. [PMID: 34585178 DOI: 10.1039/d1nr03728e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid-exfoliated 2D transition metal disulfides (TMDs) are potential substitutes for poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as hole transport layers (HTLs) in Organic Solar Cells (OSCs). Herein, high-yield and high-quality WS2 flake layers are prepared by comprehensively controlling the initial concentration, sonication processing time and centrifugal speed. The WS2 layers deposited on in situ transparent indium tin oxide (ITO) without plasma treatment show higher uniformity and conductivity than that formed on ITO after plasma treatment. With a significant increase in the short-circuit current density (JSC), the power conversion efficiency (PCE) of PM6:Y6-based non-fullerene OSCs using optimized WS2 as the HTL is higher than that using PEDOT:PSS as the HTL(15.75% vs. 15.31%). Combining the morphology characteristics with carrier recombination characteristics, the higher quality of the ITO/WS2 composite substrate leads to better charge transport and a lower bimolecular recombination rate in OSCs, thereby improving the device performance.
Collapse
Affiliation(s)
- Xiaojing Wang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, International School of Advanced Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China.
| | - Peng Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, International School of Advanced Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China.
| | - Boonkar Yap
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, International School of Advanced Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China.
- Electronic and Communications Department, College of Engineering, Universiti Tenaga Nasional, Kajang, Selangor 43000, Malaysia
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang, Selangor 43000, Malaysia
| | - Ruidong Xia
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, International School of Advanced Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China.
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, 999077, China
| | - Zhicai He
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, International School of Advanced Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China.
| |
Collapse
|