1
|
Awadein M, Kumar A, Wang Y, Dong M, Müllegger S, Gramse G. Electrochemical Scanning Microwave Microscopy Reveals Ion Intercalation Dynamics and Maps Active Sites in 2D Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500043. [PMID: 39924760 PMCID: PMC12001304 DOI: 10.1002/smll.202500043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/28/2025] [Indexed: 02/11/2025]
Abstract
The accelerated demand for electrochemical energy storage urges the need for new, sustainable, and lightweight materials able to store high energy densities rapidly and efficiently. Development of these functional materials requires specialized techniques that can provide a close insight into the electrochemical properties at the nanoscale. For this reason, the electrochemical scanning microwave microscopy (EC-SMM) enabling local measurement of electrochemical properties with nanometer spatial resolution and sensitivity down to atto-Ampere electrochemical currents is introduced. Its power is demonstrated by studying NiCo-layered double hydroxide flakes, revealing active site locations and providing atomistic insights into the catalytic process. EC-SMM's spatial resolution of 16 ± 1 nm allows detailed analysis of edge effects in this 2D material, including localized electrochemical impedance spectroscopy and cyclic voltammetry. Coupled with advanced numerical modeling of diffusion and migration dynamics at the material interface, the findings elucidate the previously hypothesized processes responsible for localized enhancements in electrochemical activity, while pinpointing essential parameters for tuning the thermodynamics of ion intercalation and optimizing surface adsorption.
Collapse
Affiliation(s)
| | - Abhishek Kumar
- Institute of Semiconductor and Solid‐State PhysicsJohannes Kepler UniversityLinz4040Austria
| | - Yuqing Wang
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDK‐8000Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDK‐8000Denmark
| | - Stefan Müllegger
- Institute of Semiconductor and Solid‐State PhysicsJohannes Kepler UniversityLinz4040Austria
| | - Georg Gramse
- Institute of BiophysicsJohannes Kepler UniversityLinz4020Austria
| |
Collapse
|
2
|
Nair KM, Kanthasamy S, Aruchamy G, Thangavelu S. Hierarchical S-Doped Vanadium MOFs with Multiwalled Carbon Nanotubes: A Robust Bifunctional Catalyst for Efficient Water Electrolysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2763-2777. [PMID: 39854179 DOI: 10.1021/acs.langmuir.4c04577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Developing nonprecious metal-based electrocatalysts with exceptional activity and durability for water electrolysis remains a significant challenge. Herein, we report a highly efficient bifunctional electrocatalyst composed of sulfur-doped vanadium metal-organic frameworks (S@V-MOF) integrated with multiwalled carbon nanotubes (MWCNTs) to promote the synergistic effect between S@V-MOF and MWCNTs and modulate the electronic structure of the catalyst, which eventually enhanced its electrocatalytic performance. The S@V-MOF/MWCNT catalyst loaded at the Ni foam electrode exhibits remarkable activity for both the hydrogen evolution reaction (HER) in acidic media and oxygen evolution reaction (OER) in alkaline media, requiring overpotentials of 48 and 227 mV, respectively, to reach a current density of 10 mA cm-2. Notably, when employed as a bifunctional catalyst in a two-electrode overall water splitting electrochemical cell, the S@V-MOF/MWCNT catalyst-loaded electrode delivers an outstanding cell voltage of 1.53 V at 10 mA cm-2 with exceptional durability. This work provides a promising strategy for designing cost-effective and efficient electrocatalysts for water electrolysis.
Collapse
Affiliation(s)
- Krishnendu M Nair
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India
| | - Sureka Kanthasamy
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India
| | | | | |
Collapse
|
3
|
Nair KM, Shankar P, Thangavelu S. Metal-organic framework-derived Se-blended ZrO 2 with a nitrogen-doped carbon heterostructure for electrocatalytic overall water splitting. Dalton Trans 2024; 53:17918-17933. [PMID: 39432259 DOI: 10.1039/d4dt02542c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Designing low cost, highly active and efficient non-noble metal bifunctional electrocatalysts with remarkable operational reliability for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is indispensable for large-scale water electrolysis and the development of clean energy conversion technologies. Herein, we decorated a two-dimensional (2D) selenium-blended zirconium dioxide (Se-ZrO2) on the surface of a nitrogen-doped carbon heterostructure (Se-ZrO2@NC), which was derived from Zr-metal-organic frameworks (Zr-MOFs), and loaded it on a stainless-steel mesh electrode. Accordingly, phenomenal electrocatalytic performance was observed for the Se-ZrO2@NC-loaded electrode with a minimum overpotential of 48 mV for the HER and 251 mV for the OER at 10 mA cm-2 current density in acidic and alkaline mediums, respectively. Moreover, a complete cell set up was constructed, where the OER and HER were studied at the anode and cathode, respectively, with a cell potential of 1.58 V to reach a current density of 10 mA cm-2 together with an exciting long-term stability of over 48 h. The developed Se-blended 2D transition metal dioxides on the 2D nitrogen-doped carbon heterostructure extended to a variety of catalytically active materials that would provide highly active and stable electrocatalysts for alkaline water splitting studies.
Collapse
Affiliation(s)
- Krishnendu M Nair
- Department of Chemistry, Bharathiar University, Coimbatore-641 046, India.
| | - Pavithra Shankar
- Department of Chemistry, Bharathiar University, Coimbatore-641 046, India.
| | | |
Collapse
|
4
|
Aruchamy G, Kim BK. Recent Trends and Perspectives in Single-Entity Electrochemistry: A Review with Focus on a Water Splitting Reaction. Crit Rev Anal Chem 2024:1-17. [PMID: 38829955 DOI: 10.1080/10408347.2024.2358492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Electrochemical measurements involving single nanoparticles have attracted considerable research attention. In recent years, various studies have been conducted on single-entity electrochemistry (SEE) for the in-depth analyses of catalytic reactions. Although, several electrocatalysts have been developed for H2 energy production, designing innovative electrocatalysts for this purpose remains a challenging task. Stochastic collision electrochemistry is gaining increased attention because it has led to new findings in the SEE field. Importantly, it facilitates establishing structure activity relationships for electrocatalysts by monitoring transient signals. This article reviews the recent achievements related to hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using different electrocatalysts at the nanoscale level. In particular, it discusses the electrocatalytic activities of noble metal nanoparticles, including Ag, Au, Pt, and Pd nanoparticles, at the single-particle level. Because heterogeneity is a key factor affecting the catalytic activity of nanostructures, our work focuses on the influence of heterogeneities in catalytic materials on the OER and HER activities. These results may help to achieve a better understanding of the fundamental processes involved in the water splitting reaction.
Collapse
Affiliation(s)
- Gowrisankar Aruchamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Byung-Kwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Miera GG, Heinz O, Hong W, Walker GC. Virtual Issue: Electrode Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18171-18174. [PMID: 38111359 DOI: 10.1021/acs.langmuir.3c03655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
|
6
|
Yan W, Zeng HY, Zhang K, Long YW, Wang MX. Ni-Co-Mn hydrotalcite-derived hierarchically porous sulfide for hybrid supercapacitors. J Colloid Interface Sci 2023; 635:379-390. [PMID: 36599237 DOI: 10.1016/j.jcis.2022.12.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Ternary transition metal sulfides have attracted much attention due to their superior electrochemical properties. Nevertheless, it is difficult to commercialize sulfides due to their intrinsic properties such as dull reaction kinetics and an insufficient number of active sites. Herein, a self-supporting porous NiCoMnS sulfide (NiCoMnS/NF) arrayed on nickel foam (NF) with 3D honeycomb-like structure was designed and prepared via a hydrothermal and post-sulfidation process. It was found that the 3D hierarchically network architecture, constructed by nanosheets with abundant cavities, endowed NiCoMnS/NF with a high specific area and rich ion/electron-transport channels, which facilitated ion/electron transfer and Faradaic reaction kinetic. The optimal NiCoMnS/NF exhibited a markedly improved electrochemical performance due to the merits of complementary multi-composition and unique 3D network structure with multi-level "superhighways". Furthermore, the NiCoMnS//AC device fabricated with NiCoMnS/NF cathode and activated carbon (AC) anode delivered an excellent specific charge and exceptional energy density. This work offers a reference for designing the structure of electrode materials.
Collapse
Affiliation(s)
- Wei Yan
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Hong-Yan Zeng
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China.
| | - Kai Zhang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Yi-Wen Long
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Ming-Xin Wang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| |
Collapse
|
7
|
Tang J, Wang Y, Peng Y, Sun Z, Liu R, Ran F. Waste Adsorbent-Derived Interconnected Hierarchical Attapulgite@Carbon/NiCo Layered Double Hydroxide Nanocomposites for Advanced Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2739-2750. [PMID: 36762610 DOI: 10.1021/acs.langmuir.2c03219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The attapulgite@carbon/NiCo layered double hydroxide nanocomposites based on waste adsorbents are manufactured via simple and eco-friendly calcination and hydrothermal methods, by which they would be considerable electrode materials for advanced supercapacitors. To achieve sustainable development, the spent tetracycline-loaded attapulgite can act as a cost-effective available carbon source as well as a matrix material for carbon species and NiCo layered double hydroxide simultaneously. A controlled amount of attapulgite@carbon could be used to regulate the electrochemical properties of nanocomposites. The generated electrodes possess superior electrochemical properties with a specific capacitance of 2013.8 F g-1 at 0.5 A g-1, a retention rate of 87.7% at 5 A g-1, and a cyclic stability of 64.9% for 4000 cycles at 5 A g-1. Thus, the asymmetric supercapacitor device assembled with attapulgite@carbon/NiCo layered double hydroxide nanocomposites||active carbon shows a maximum capacitance of 231.3 F g-1 at 0.5 A g-1, with a preeminent energy density of 82.2 Wh kg-1 when its power density is 4318 W kg-1. This approach would contribute to the development of supercapacitors in an efficient and effective manner, as well as provide a feasible strategy for solving tetracycline pollution and recycling waste adsorbents to achieve sustainable development.
Collapse
Affiliation(s)
- Jie Tang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Yumeng Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Yuanyou Peng
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Zhijiang Sun
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Rui Liu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| |
Collapse
|
8
|
Gowrisankar A, Thangavelu S. a‐MnO2 sensitized SrCO3‐Sr(OH)2 supported on two dimensional carbon composites as stable electrode material for asymmetric supercapacitor and for oxygen evolution catalysis. ChemElectroChem 2022. [DOI: 10.1002/celc.202200213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Selvaraju Thangavelu
- Bharathiar University Chemistry Department of ChemistryBharathiar University 641046 Coimbatore INDIA
| |
Collapse
|
9
|
Wang Z, Liu Z, Wang L, Zhao K, Sun X, Jia D, Liu J. Construction of core‐shell heterostructured nanoarrays of Cu(OH)2@NiFe‐layered double hydroxide via facile potentiostatic electrodeposition for highly efficient supercapacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zihao Wang
- Qingdao University College of Materials Science and Engineering CHINA
| | - Zhiqiang Liu
- Qingdao University College of Materials Science and Engineering CHINA
| | - Lei Wang
- Qingdao University College of Materials Science and Engineering CHINA
| | - Kai Zhao
- Qingdao University College of Materials Science and Engineering CHINA
| | - Xiaolin Sun
- Qingdao University College of Materials Science and Engineering CHINA
| | - Dedong Jia
- Qingdao University College of Materials Science and Engineering CHINA
| | | |
Collapse
|
10
|
Wang J, Liu Z, Zhao Y. Alcohol hydroxides regulate the growth of Ni-Co layered double hydroxides on carbon fiber cloth as supercapacitor electrode materials. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Hierarchical 2D/2D interface of nickel aluminum oxide and nickel aluminum layered double hydroxide nanoflowers: An efficient and robust electrocatalyt for overall water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|