1
|
Zribi R, Johnson ZT, Ellis G, Banwart C, Opare-Addo J, Hooe SL, Breger J, Foti A, Gucciardi PG, Smith EA, Gomes CL, Medintz IL, Neri G, Claussen JC. Molybdenum Disulfide/Diselenide-Laser-Induced Graphene-Glycine Oxidase Composite for Electrochemical Sensing of Glyphosate. ACS APPLIED MATERIALS & INTERFACES 2025; 17:247-259. [PMID: 39682009 DOI: 10.1021/acsami.4c14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The widespread use of the pesticide glyphosate has raised concerns regarding its potential health and environmental impacts. Consequently, there is an increasing demand for monitoring glyphosate levels in surface waters and food products. Currently, there is no commercially available rapid, field-deployable sensor capable of quantifying glyphosate concentrations in environmental samples. This study presents the development of a biosensor based on laser-induced graphene (LIG) that is functionalized with transition metal dichalcogenides (TMDs) and the enzyme glycine oxidase. The LIG is created through a scalable process using a CO2 laser to convert polyimide into a porous, nano/microstructured graphene architecture. The high surface area of LIG acts as a conductive scaffold for subsequent functionalization of both molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) to further improve the electroactive surface area of the electrode. The resultant sensors, functionalizesd with the enzyme, demonstrate linear sensing ranges from 10 to 90 μM for glyphosate with detection limits of 4.0 and 6.1 μM for LIG electrodes modified with MoS2 and MoSe2, respectively. Furthermore, the sensors detect glyphosphate at negative working potentials, helping to minimize interference from endogeneous electroactive species and to provide consistent glyphosphate monitoring in actual food products (i.e., soybeans and pinto beans). Overall, the biosensors integrate scalable manufacturing with cost-effective TMDs and LIG, eliminating the need for costly noble metals in the biosensor design, and offering a reliable method for assessing glyphosate in food products.
Collapse
Affiliation(s)
- Rayhane Zribi
- Department of Engineering, University of Messina, C.da Di Dio, Messina I-98166, Italy
- CNR IPCF Istituto per i Processi Chimico-Fisici, viale F. Stagno D'Alcontres 37, Messina I-98156, Italy
| | - Zachary T Johnson
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Griffin Ellis
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Christopher Banwart
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jemima Opare-Addo
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, The Ames Laboratory, Ames, Iowa 50011, United States
| | - Shelby L Hooe
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington D.C. 20375, United States
| | - Joyce Breger
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington D.C. 20375, United States
| | - Antonino Foti
- CNR IPCF Istituto per i Processi Chimico-Fisici, viale F. Stagno D'Alcontres 37, Messina I-98156, Italy
| | - Pietro G Gucciardi
- CNR IPCF Istituto per i Processi Chimico-Fisici, viale F. Stagno D'Alcontres 37, Messina I-98156, Italy
| | - Emily A Smith
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, The Ames Laboratory, Ames, Iowa 50011, United States
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington D.C. 20375, United States
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.da Di Dio, Messina I-98166, Italy
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Mansouri Majd S, Mirzapour F, Shamsipur M, Manouchehri I, Babaee E, Pashabadi A, Moradian R. Design of a novel aptamer/molecularly imprinted polymer hybrid modified Ag-Au@Insulin nanoclusters/Au-gate-based MoS 2 nanosheet field-effect transistor for attomolar detection of BRCA1 gene. Talanta 2023; 257:124394. [PMID: 36858016 DOI: 10.1016/j.talanta.2023.124394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Early detection of breast cancer, the first main cause of death in women, with robust assay platforms using appropriate biomarkers is of great importance for diagnosis and follow-up of the disease progression. This paper introduces an extra selective and sensitive label-free aptasensor for the screening of BRCA1 gene biomarker by taking advantage of a gate modified with aptamer and molecularly imprinted polymer hybrid (MIP) as a new synthetic receptor film coupled with an electrolyte-gated molybdenum disulfide (MoS2) field-effect transistor (FET). The Au gate surface of FET was modified with insulin stabilized bimetallic Ag-Au@nanoclusters (Ag-Au@InsNCs), after which, the immobilization of the hybridized aptamer and o-phenylenediamine was electropolymerized to form an aptamer-MIP hybrid receptor. The output characteristics of Apta-MIP hybrid modified Au gate MoS2 FET device were followed as a result of change in electrical double layer capacitance of electrolye-gate interface. The magnitude of decrease in the drain current showed a linear response over a wide concentration range of 10 aM to 1 nM of BRCA1 ssDNA with a sensitivity as high as 0.4851 μA/decade of concentration and a limit of detection (LOD) of 3.0 aM while very low responses observed for non-imprinted polymer. The devised aptasensor not only was capable to the discrimination of the complementary versus one-base mismatch BRCA1 ssDNA sequence, but also it could detect the complementary BRCA1 ssDNA in spiked human serum samples over a wide concentration range of 10 aM to 1.0 nM with a low LOD of 6.4 aM and a high sensitivity 0.3718 μA/decade.
Collapse
Affiliation(s)
| | - Fatemeh Mirzapour
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran
| | - Iraj Manouchehri
- Department of Physics, Razi University, 67149-67346, Kermanshah, Iran
| | - Elaheh Babaee
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran
| | - Afshin Pashabadi
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran
| | - Rostam Moradian
- Department of Physics, Razi University, 67149-67346, Kermanshah, Iran
| |
Collapse
|
3
|
Mazuryk J, Klepacka K, Piechowska J, Kalecki J, Derzsi L, Piotrowski P, Paszke P, Pawlak DA, Berneschi S, Kutner W, Sharma PS. In-Capillary Photodeposition of Glyphosate-Containing Polyacrylamide Nanometer-Thick Films. ACS APPLIED POLYMER MATERIALS 2023; 5:223-235. [PMID: 36660253 PMCID: PMC9841503 DOI: 10.1021/acsapm.2c01461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The present research reports on in-water, site-specific photodeposition of glyphosate (GLP)-containing polyacrylamide (PAA-GLP) nanometer-thick films (nanofilms) on an inner surface of fused silica (fused quartz) microcapillaries presilanized with trimethoxy(octen-7-yl)silane (TMOS). TMOS was chosen because of the vinyl group presence in its structure, enabling its participation in the (UV light)-activated free-radical polymerization (UV-FRP) after its immobilization on a fused silica surface. The photodeposition was conducted in an aqueous (H2O/ACN; 3:1, v/v) solution, using UV-FRP (λ = 365 nm) of the acrylamide (AA) functional monomer, the N,N'-methylenebis(acrylamide) (BAA) cross-linking monomer, GLP, and the azobisisobutyronitrile (AIBN) UV-FRP initiator. Acetonitrile (ACN) was used as the porogen and the solvent to dissolve monomers and GLP. Because of the micrometric diameters of microcapillaries, the silanization and photodeposition procedures were first optimized on fused silica slides. The introduction of TMOS, as well as the formation of PAA and PAA-GLP nanofilms, was determined using atomic force microscopy (AFM), scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) spectroscopy, and confocal micro-Raman spectroscopy. Particularly, AFM and SEM-EDX measurements determined nanofilms' thickness and GLP content, respectively, whereas in-depth confocal (micro-Raman spectroscopy)-assisted imaging of PAA- and PAA-GLP-coated microcapillary inner surfaces confirmed the successful photodeposition. Moreover, we examined the GLP impact on polymer gelation by monitoring hydration in a hydrogel and a dried powder PAA-GLP. Our study demonstrated the usefulness of the in-capillary micro-Raman spectroscopy imaging and in-depth profiling of GLP-encapsulated PAA nanofilms. In the future, our simple and inexpensive procedure will enable the fabrication of polymer-based microfluidic chemosensors or adsorptive-separating devices for GLP detection, determination, and degradation.
Collapse
Affiliation(s)
- Jaroslaw Mazuryk
- Electrode
Processes Research Team, Institute of Physical
Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Bio
& Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Klepacka
- Functional
Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- ENSEMBLE3
sp. z o. o., Wólczyńska
133, 01-919 Warsaw, Poland
| | - Joanna Piechowska
- Functional
Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jakub Kalecki
- Functional
Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ladislav Derzsi
- Microfluidics
and Complex Fluids Research Team, Institute
of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Piotrowski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- ENSEMBLE3
sp. z o. o., Wólczyńska
133, 01-919 Warsaw, Poland
| | - Piotr Paszke
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- ENSEMBLE3
sp. z o. o., Wólczyńska
133, 01-919 Warsaw, Poland
| | - Dorota A. Pawlak
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- ENSEMBLE3
sp. z o. o., Wólczyńska
133, 01-919 Warsaw, Poland
| | - Simone Berneschi
- Institute
of Applied Physics “Nello Carrara”—National Research
Council (IFAC-CNR), Via Madonna del Piano, 10, 50019 Sesto Fiorentino, FI, Italy
| | - Wlodzimierz Kutner
- Electrode
Processes Research Team, Institute of Physical
Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional
Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Ogurcovs A, Kadiwala K, Sledevskis E, Krasovska M, Mizers V. Glyphosate Sensor Based on Nanostructured Water-Gated CuO Field-Effect Transistor. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22228744. [PMID: 36433339 PMCID: PMC9697268 DOI: 10.3390/s22228744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 05/31/2023]
Abstract
This research presents a comparative analysis of water-gated thin film transistors based on a copper oxide (CuO) semiconductor in the form of a smooth film and a nanostructured surface. A smooth CuO film was deposited through reactive magnetron sputtering followed by annealing in atmosphere at a temperature of 280 ∘C. Copper oxide nanostructures were obtained by hydrothermal synthesis on a preliminary magnetron sputtered 2 nm thick CuO precursor followed by annealing at 280 ∘C. An X-ray diffraction (XRD) analysis of the samples revealed the presence of a tenorite (CuO) phase with a predominant orientation of (002). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies of the samples revealed a highly developed surface with crystallites having a monoclinic syngony and dimensions of 15-20 nm in thickness, 150 nm in length, and 100 nm in height relative to a 2.5 nm height for the CuO crystallites of the smooth film. Electric measurements of the studied devices revealed typical current-voltage characteristics of semiconductors with predominant hole conductivity. The maximum ON/OFF ratio at a rain-source voltage of 0.4 volts and -1.2 volts on the gate for a smooth film was 102, and for a nanostructured transistor, it was 103. However, a much stronger saturation of the channel was observed for the nanostructured channel than for the smooth film. A test solution containing glyphosate dissolved in deionized water in three different concentrations of 5, 10, and 15 μmol/L was used during the experiments. The principle of operation was based on the preliminary saturation of the solution with Cu ions, followed by the formation of a metal-organic complex alongside glyphate. The glyphosate contents in the analyte led to a decrease in the conductivity of the transistor on the axis of the smooth film. In turn, the opposite effect was observed on the nanostructured surface, i.e., an increase in conductivity was noted upon the introduction of an analyte. Despite this, the overall sensitivity of the nanostructured device was twice as high as that of the device with a thin film channel. The relative changes in the field-effect transistor (FET) conductivity at maximum glyphosate concentrations of 15 μmol/L reached 19.42% for the nanostructured CuO film and 3.3% for the smooth film.
Collapse
Affiliation(s)
- Andrejs Ogurcovs
- Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
| | - Kevon Kadiwala
- Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
| | - Eriks Sledevskis
- G. Liberts’ Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1A, LV-5401 Daugavpils, Latvia
| | - Marina Krasovska
- G. Liberts’ Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1A, LV-5401 Daugavpils, Latvia
| | - Valdis Mizers
- G. Liberts’ Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1A, LV-5401 Daugavpils, Latvia
| |
Collapse
|
5
|
Balcı Leinen M, Lindenthal S, Heimfarth D, Zaumseil J. Networks of as-dispersed, polymer-wrapped (6,5) single-walled carbon nanotubes for selective Cu 2+ and glyphosate sensing. NANOSCALE 2022; 14:13542-13550. [PMID: 36097951 DOI: 10.1039/d2nr02517e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Networks of semiconducting single-walled carbon nanotubes (SWNTs) can be used as the transducing layer for sensors based on water-gated transistors. To add specific sensing capabilities, SWNTs are often functionalized with additional moieties or selective membranes are applied, thus increasing the complexity of the fabrication process. Here we demonstrate that drop-cast networks of monochiral (6,5) SWNTs, which are commonly dispersed in organic solvents with the polyfluorene-bipyridine copolymer PFO-BPy, can be employed directly and without additional functionalization or ion-selective membranes to detect Cu2+ ions over a wide range of concentrations in aqueous solutions. The observed voltage shifts of water-gated transistors with these (6,5) SWNT networks directly correlate with the cupric ion concentration. They result from induced n-doping due to the complexation of positive copper ions to the bipyridine units of the wrapping polymer. Furthermore, the competitive binding of Cu2+ to the herbicide glyphosate as well as to biologically relevant pyrophosphates can be used for the direct detection and quantification of these molecules at nano- to micromolar concentrations.
Collapse
Affiliation(s)
- Merve Balcı Leinen
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| | - Sebastian Lindenthal
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| | - Daniel Heimfarth
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Johnson ZT, Jared N, Peterson JK, Li J, Smith EA, Walper SA, Hooe SL, Breger JC, Medintz IL, Gomes C, Claussen JC. Enzymatic Laser-Induced Graphene Biosensor for Electrochemical Sensing of the Herbicide Glyphosate. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2200057. [PMID: 36176938 PMCID: PMC9463521 DOI: 10.1002/gch2.202200057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate is a globally applied herbicide yet it has been relatively undetectable in-field samples outside of gold-standard techniques. Its presumed nontoxicity toward humans has been contested by the International Agency for Research on Cancer, while it has been detected in farmers' urine, surface waters and crop residues. Rapid, on-site detection of glyphosate is hindered by lack of field-deployable and easy-to-use sensors that circumvent sample transportation to limited laboratories that possess the equipment needed for detection. Herein, the flavoenzyme, glycine oxidase, immobilized on platinum-decorated laser-induced graphene (LIG) is used for selective detection of glyphosate as it is a substrate for GlyOx. The LIG platform provides a scaffold for enzyme attachment while maintaining the electronic and surface properties of graphene. The sensor exhibits a linear range of 10-260 µ m, detection limit of 3.03 µ m, and sensitivity of 0.991 nA µ m -1. The sensor shows minimal interference from the commonly used herbicides and insecticides: atrazine, 2,4-dichlorophenoxyacetic acid, dicamba, parathion-methyl, paraoxon-methyl, malathion, chlorpyrifos, thiamethoxam, clothianidin, and imidacloprid. Sensor function is further tested in complex river water and crop residue fluids, which validate this platform as a scalable, direct-write, and selective method of glyphosate detection for herbicide mapping and food analysis.
Collapse
Affiliation(s)
| | - Nathan Jared
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - John K. Peterson
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - Jingzhe Li
- Department of ChemistryIowa State UniversityAmesIA50011USA
- The Ames LaboratoryU.S. Department of EnergyAmesIA50011USA
| | - Emily A. Smith
- Department of ChemistryIowa State UniversityAmesIA50011USA
- The Ames LaboratoryU.S. Department of EnergyAmesIA50011USA
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashington, D.C20375USA
| | - Shelby L. Hooe
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashington, D.C20375USA
- National Research CouncilWashington, DC20001USA
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashington, D.C20375USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashington, D.C20375USA
| | - Carmen Gomes
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | | |
Collapse
|
7
|
Segantini M, Parmeggiani M, Ballesio A, Palmara G, Frascella F, Marasso SL, Cocuzza M. Design of a Portable Microfluidic Platform for EGOT-Based in Liquid Biosensing. SENSORS (BASEL, SWITZERLAND) 2022; 22:969. [PMID: 35161715 PMCID: PMC8839715 DOI: 10.3390/s22030969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/21/2023]
Abstract
In biosensing applications, the exploitation of organic transistors gated via a liquid electrolyte has increased in the last years thanks to their enormous advantages in terms of sensitivity, low cost and power consumption. However, a practical aspect limiting the use of these devices in real applications is the contamination of the organic material, which represents an obstacle for the realization of a portable sensing platform based on electrolyte-gated organic transistors (EGOTs). In this work, a novel contamination-free microfluidic platform allowing differential measurements is presented and validated through finite element modeling simulations. The proposed design allows the exposure of the sensing electrode without contaminating the EGOT device during the whole sensing tests protocol. Furthermore, the platform is exploited to perform the detection of bovine serum albumin (BSA) as a validation test for the introduced differential protocol, demonstrating the capability to detect BSA at 1 pM concentration. The lack of contamination and the differential measurements provided in this work can be the first steps towards the realization of a reliable EGOT-based portable sensing instrument.
Collapse
Affiliation(s)
- Matteo Segantini
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.S.); (A.B.); (G.P.); (F.F.); (S.L.M.); (M.C.)
| | - Matteo Parmeggiani
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.S.); (A.B.); (G.P.); (F.F.); (S.L.M.); (M.C.)
| | - Alberto Ballesio
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.S.); (A.B.); (G.P.); (F.F.); (S.L.M.); (M.C.)
| | - Gianluca Palmara
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.S.); (A.B.); (G.P.); (F.F.); (S.L.M.); (M.C.)
| | - Francesca Frascella
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.S.); (A.B.); (G.P.); (F.F.); (S.L.M.); (M.C.)
| | - Simone Luigi Marasso
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.S.); (A.B.); (G.P.); (F.F.); (S.L.M.); (M.C.)
- CNR-IMEM, Parco Area delle Scienze, 37a, 43124 Parma, Italy
| | - Matteo Cocuzza
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.S.); (A.B.); (G.P.); (F.F.); (S.L.M.); (M.C.)
- CNR-IMEM, Parco Area delle Scienze, 37a, 43124 Parma, Italy
| |
Collapse
|
8
|
Sasaki Y, Lyu X, Tang W, Wu H, Minami T. Polythiophene-Based Chemical Sensors: Toward On-Site Supramolecular Analytical Devices. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Wei Tang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hao Wu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|