1
|
Miyazaki R, Suzuki M, Nakajima N, Hamada M, Koyama Y. Synthesis and self-assembly behaviors of α-galactosyl ceramide (1,2)-polysaccharide analogue. Int J Biol Macromol 2024; 263:130276. [PMID: 38373566 DOI: 10.1016/j.ijbiomac.2024.130276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
α-Galactosyl ceramide (GalCer) as a glycolipid has been long used as a standard reference for positive control in natural killer T cell studies. The (1,2)-disaccharide analogue of GalCer attracts a special attention in the study of lysosomal glycolipid processing. This paper describes the synthesis and self-assembly behaviors of GalCer 1,2-polysaccharide analogue (PolyGalCer), having considered the 1,2-disaccharide analogue as a structural motif. The synthesis of PolyGalCer is performed via one-pot glycosidation technique of 1,2-linked oligogalactan exploiting chain polymerization of galactose-based cyclic sulfite as a monomer initiated with ceramide-based alcoholic aglycon. Through the concentration dependence of PolyGalCer solutions in water or in MeOH on the turbidity, it is found that PolyGalCer forms associates in both media. From the intersection points, the critical aggregation concentration (CAC) values of PolyGalCer in water and MeOH were estimated. To know the self-assembly and the thermal transition behaviors, we performed dynamic light scattering (DLS) analysis of the associates comprising PolyGalCer in water. The transmission electron microscopy observations of the aqueous sample solution indicate that the solution of PolyGalCer includes large spherical associates. The results clarify that the 1,2-galactan moiety of PolyGalCer skeleton contributes on the kinetic inhibition of large associate formation and the metamorphosis of associates.
Collapse
Affiliation(s)
- Ryo Miyazaki
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Misaki Suzuki
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Noriyuki Nakajima
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masahiro Hamada
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhito Koyama
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
2
|
Ihsan AB, Imran AB, Susan MABH. Advanced Functional Polymers: Properties and Supramolecular Phenomena in Hydrogels and Polyrotaxane-based Materials. CHEMISTRY AFRICA 2023; 6:79-94. [DOI: 10.1007/s42250-022-00460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/20/2022] [Indexed: 09/01/2023]
|
3
|
Brønsted acid-catalyzed ring-opening polycondensation of galactose-based cyclic sulfite. Polym J 2022. [DOI: 10.1038/s41428-022-00724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|