1
|
Zhang P, Li N, Li L, Yu Y, Tuerhong R, Su X, Zhang B, Han L, Han Y. g-C 3N 4-Based Photocatalytic Materials for Converting CO 2 Into Energy: A Review. Chemphyschem 2024; 25:e202400075. [PMID: 38822681 DOI: 10.1002/cphc.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Environmental pollution management and renewable energy development are humanity's biggest issues in the 21st century. The rise in atmospheric CO2, which has surpassed 400 parts per million, has stimulated research on CO2 reduction and conversion methods. Presently, photocatalytic conversion of CO2 to valuable hydrocarbons enables the transformation of solar energy into chemical energy and offers a novel avenue for energy conversion while regulating the greenhouse effect. This is an ideal strategy for simultaneously addressing environmental issues and the energy crisis. Photocatalysts are essential to photocatalytic processes. Photocatalyst is the core of photocatalytic technology, and graphite carbon nitride (g-C3N4) has attracted much attention because of its nonmetallic characteristics, and it has the characteristics of low cost, tunable electronic structure, easy manufacture and strong reducibility. However, its activity is not only affected by external reaction conditions, but also by the band gap structure, physical and chemical stability, surface morphology and specific surface area of the photocatalyst it. In this paper, the application progress of g-C3N4-based photocatalytic materials in CO2 reduction is reviewed, and the modification strategies of g-C3N4-based catalysts to obtain better catalytic efficiency and selectivity in CO2 photocatalytic reduction are summarized, and the future development of this material is prospected.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Ning Li
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Longjian Li
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Yongchong Yu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Reyila Tuerhong
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Xiaoping Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Bin Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Lijuan Han
- Gansu Natural Energy Institute, Gansu Academy of Science, Lanzhou, 730046, P.R.China
| | - Yuqi Han
- College of Chemistry and Chemical Engineering, He Xi University, No.846 North Circle Road, Zhangye, 734000, P.R.China
| |
Collapse
|
2
|
Wu X, Li J, Li X, Niu L, Zhang F, Li X, Li J, Shao C, Liu Y. Synergistic Engineering of Energy Band Alignment and Interfacial Electric Field Distribution over Bi-bismuth-Based Hetero-nanofibers for Boosting Visible-Light-Driven Photocatalytic Ammonia Synthesis and Antibiotic Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11263-11276. [PMID: 38743290 DOI: 10.1021/acs.langmuir.4c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Synergistic engineering of energy band alignment and interfacial electric field distribution is essential for photocatalyst design but is still challenging because of the limitation on refined regulation in the nanoscale. This study addresses the issue by employing surface modification and thermal-induced phase transformation in Bi2MoO6/BixOyIz hetero-nanofiber frameworks. The energy band alignment switches from a type-II interface to a Z-scheme contact with stronger redox potentials and inhibited electron traps, and the optimized built-in electric field distribution could be reached based on experimental and theoretical investigations. The engineered hetero-nanofibers exhibit outstanding visible-light-driven photocatalytic nitrogen reduction activity (605 μmol/g/h) and tetracycline hydrochloride removal rate (81.5% within 30 min), ranking them among the top-performing bismuth series materials. Furthermore, the photocatalysts show promise in activating advanced oxidants for efficient organic pollutant degradation. Moreover, the Bi2MoO6/Bi5O7I hetero-nanofibers possess good recycling stability owing to their three-dimensional network structure. This research offers valuable insights into heterojunction design for environmental remediation and industrial applications.
Collapse
Affiliation(s)
- Xi Wu
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Jing Li
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Xinghua Li
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Luyao Niu
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Fang Zhang
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Xiaowei Li
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Jiaxing Li
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Changlu Shao
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| |
Collapse
|
3
|
Abebe B, Gupta NK, Tsegaye D. A critical mini-review on doping and heterojunction formation in ZnO-based catalysts. RSC Adv 2024; 14:17338-17349. [PMID: 38813127 PMCID: PMC11134265 DOI: 10.1039/d4ra02568g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
This mini-review on doping and heterojunctions for catalysis applications provides a comprehensive overview of key aspects. Doping, when carried out adequately with a uniform distribution, creates a new energy level that significantly enhances charge transfer and light absorption. This new level alters the material's morphology and enhances intrinsic defects. For instance, ZnO, despite its exceptional band edge concerning oxygen reduction and water oxidation redox potentials, faces the issue of electron-hole recombination. However, forming a heterojunction can effectively aid charge transfer and prolong electron-hole relaxation without recombination. This is where the role of doping and heterojunctions becomes crucial. Additionally, incorporating noble metals with S- and Z-scheme heterojunctions offers a promising mechanism for charge transfer and visible light harvesting, further amplifying the catalytic properties.
Collapse
Affiliation(s)
- Buzuayehu Abebe
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University P.O. Box 1888 Adama Ethiopia
| | - Neeraj K Gupta
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University P.O. Box 1888 Adama Ethiopia
| | - Dereje Tsegaye
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University P.O. Box 1888 Adama Ethiopia
| |
Collapse
|
4
|
Ali S, Ismail PM, Khan M, Dang A, Ali S, Zada A, Raziq F, Khan I, Khan MS, Ateeq M, Khan W, Bakhtiar SH, Ali H, Wu X, Shah MIA, Vinu A, Yi J, Xia P, Qiao L. Charge transfer in TiO 2-based photocatalysis: fundamental mechanisms to material strategies. NANOSCALE 2024; 16:4352-4377. [PMID: 38275275 DOI: 10.1039/d3nr04534j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Semiconductor-based photocatalysis has attracted significant interest due to its capacity to directly exploit solar energy and generate solar fuels, including water splitting, CO2 reduction, pollutant degradation, and bacterial inactivation. However, achieving the maximum efficiency in photocatalytic processes remains a challenge owing to the speedy recombination of electron-hole pairs and the limited use of light. Therefore, significant endeavours have been devoted to addressing these issues. Specifically, well-designed heterojunction photocatalysts have been demonstrated to exhibit enhanced photocatalytic activity through the physical distancing of electron-hole pairs generated during the photocatalytic process. In this review, we provide a systematic discussion ranging from fundamental mechanisms to material strategies, focusing on TiO2-based heterojunction photocatalysts. Current efforts are focused on developing heterojunction photocatalysts based on TiO2 for a variety of photocatalytic applications, and these projects are explained and assessed. Finally, we offer a concise summary of the main insights and challenges in the utilization of TiO2-based heterojunction photocatalysts for photocatalysis. We expect that this review will serve as a valuable resource to improve the efficiency of TiO2-based heterojunctions for energy generation and environmental remediation.
Collapse
Affiliation(s)
- Sharafat Ali
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Pir Muhammad Ismail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Muhammad Khan
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Alei Dang
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Sajjad Ali
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Fazal Raziq
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Imran Khan
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, Changsha, 410083, People's Republic of China
| | - Muhammad Shakeel Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Muhammad Ateeq
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Waliullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Syedul Hasnain Bakhtiar
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Haider Ali
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Xiaoqiang Wu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Muhammad Ishaq Ali Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Pengfei Xia
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Liang Qiao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
5
|
Dash S, Tripathy SP, Subudhi S, Behera P, Mishra BP, Panda J, Parida K. A Visible Light-Driven α-MnO 2/UiO-66-NH 2 S-Scheme Photocatalyst toward Ameliorated Oxy-TCH Degradation and H 2 Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4514-4530. [PMID: 38350006 DOI: 10.1021/acs.langmuir.3c04050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Photocatalytic hydrogen production and pollutant degradation using a heterogeneous photocatalyst remains an alternative route for mitigating the impending pollution and energy crisis. Hence, the development of cost-effective and environmentally friendly semiconducting materials with high solar light captivation nature is imperative. To overcome this challenge, α-MnO2 nanorod (NR)-modified MOF UiO-66-NH2 (UNH) was prepared via a facile solvothermal method, which is efficient toward H2 evolution and oxy-tetracycline hydrochloride (O-TCH) degradation. The field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM) results of the α-MnO2@UNH (MnU) hybrid reveals its nanorod embedded in MOF matrix, and the X-ray photoelectron spectroscopy (XPS) result confirms the interaction of UNH moiety with α-MnO2 NRs. Additionally, the outstanding separation of photogenerated excitons and the charge-transfer efficacy are further validated by photoluminescence (PL), time-resolved photoluminescence (TRPL), electrochemical impedance spectroscopy (EIS), and transient photocurrent analysis, which are the key causes for photoactivity augmentation in the MnU composites. The MnU-2 composite shows a superior O-TCH degradation efficiency of 93.23% and an excellent H2 production rate of about 410.6 μmol h-1 upon light irradiation. This study provides significant evidence in favor of the suggested mediator-free S-scheme-adapted charge migration path, and it effectively explains the enhanced exciton separation leading to extraordinary catalytic efficiency of the proposed composite.
Collapse
Affiliation(s)
- Srabani Dash
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar 751030, Odisha, India
| | - Suraj Prakash Tripathy
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar 751030, Odisha, India
| | - Satyabrata Subudhi
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Pragyandeepti Behera
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar 751030, Odisha, India
| | | | - Jayashree Panda
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar 751030, Odisha, India
| | - Kulamani Parida
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar 751030, Odisha, India
| |
Collapse
|
6
|
Xie J, Huang J, Turgan D, Lu Z, Hu J, Feng Y, Cao Y. Acceleration of Photocatalytic CO 2 Reduction at Intimate Interface in AgBr/BiOBr Heterojunctions via a Co-anion Strategy. Inorg Chem 2023; 62:15249-15257. [PMID: 37676295 DOI: 10.1021/acs.inorgchem.3c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Constructing heterojunctions with strong interfacial interactions can accelerate the transfer and separation of photogenerated charge carriers. However, finding a simple strategy to construct tightly connected heterojunctions remains a major challenge. In this work, AgBr/BiOBr S-scheme heterojunctions were designed via a straightforward co-anionic strategy without using a solvent. The experimental results indicate that the AgBr/BiOBr heterojunction with a close contact interface can extend the use of visible light, accelerate the separation, and induce the transfer of photoelectrons and holes while maintaining an excellent redox capacity. Undoubtedly, the photocatalytic reduction rate of carbon dioxide to carbon monoxide by 1.0 AgBr/BiOBr is 87.73 μmol·g-1·h-1 (quantum efficiency is 0.57%), which is 12.15 times and 4.45 times higher than that of pure AgBr and BiOBr, respectively. The present work provides insights into a simple strategy for the preparation of strongly interacting interfacial heterojunctions for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang PR China
| | - Jianguo Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang PR China
| | - Dilireba Turgan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang PR China
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang PR China
| | - Jindou Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang PR China
| | - Yue Feng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang PR China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang PR China
| |
Collapse
|
7
|
Van Pham V, Truong TK, Le HV, Nguyen HT, Tong HD, Cao TM. Enhancing Green Product Generation of Photocatalytic NO Oxidation: A Case of WO 3 Nanoplate/g-C 3N 4 S-Scheme Heterojunction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4138-4146. [PMID: 35324210 DOI: 10.1021/acs.langmuir.2c00371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) removal by photocatalytic oxidation over g-C3N4 has achieved more efficient results. However, there is a concern about the high NO-to-NO2 conversion yield of products, which is not suitable for the photocatalytic NO reaction. In this study, we modify g-C3N4 by WO3 nanoplates for the first time for photocatalytic NO oxidation over a WO3/g-C3N4 composite to enhance the green product selectivity under atmospheric conditions. The results indicate that the photocatalytic efficiency for NO removal by the WO3/g-C3N4 composite is drastically improved and achieves 52.5%, which is approximately 2.1 times higher than that of pure g-C3N4. Significantly, the green product (NO3-) selectivity of the WO3/g-C3N4 composite is 8.7 times higher than that of pure g-C3N4, and the selectivity remained high even after five cycles of photocatalytic tests. We also conclude that the enhanced green product selectivity of photocatalytic NO oxidation by the WO3/g-C3N4 composite is due to the separation and acceleration of the photogenerated charges of the WO3/g-C3N4 S-scheme heterojunction.
Collapse
Affiliation(s)
- Viet Van Pham
- University of Science, VNU-HCM, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 700000, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Thao Kim Truong
- University of Science, VNU-HCM, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 700000, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Hai Viet Le
- University of Science, VNU-HCM, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 700000, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Hoang Thai Nguyen
- University of Science, VNU-HCM, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 700000, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Hien Duy Tong
- Faculty of Engineering, Vietnamese-German University (VGU), Le Lai Street, Hoa Phu Ward, Thu Dau Mot City, Binh Duong Province 7500, Vietnam
| | - Thi Minh Cao
- HUTECH University, 475A Dien Bien Phu Street, Binh Thanh District, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
8
|
Wang B, Wang Z, Bai C, Yang H, Sun H, Lu G, Liang S, Liu Z. Synergistic Generation of Radicals by Formic Acid/H 2O 2/g-C 3N 4 Nanosheets for Ultra-efficient Oxidative Photodegradation of Rhodamine B. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2872-2884. [PMID: 35195422 DOI: 10.1021/acs.langmuir.1c03201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water pollution is a global challenge endangering people's health. In this work, an ultra-efficient photodegradation system of Rhodamine B (RhB) has been established using a graphitic carbon nitride nanosheet (CNNS) as the semiconductor photocatalyst, from which energy is harvested on both the conduction band and valence band by formic acid and hydrogen peroxide, respectively. The optimized FA/H2O2/CNNS system increases the apparent photodegradation rate of RhB by 25 folds, from 0.0198 to 0.4975 min-1. Through a comprehensive investigation with reactive oxygen species scavengers, electron paramagnetic resonance, high-performance liquid chromatography-mass spectrometry, etc., an oxidative mechanism for RhB photodegradation has been proposed, which combines enhanced charge carrier migration and synergistic generation of multiple radicals. Comparable performance improvements have also been observed for similar systems with different semiconductors, suggesting that such a catalytic system could afford a general approach to enhance semiconductor-catalyzed photodegradation.
Collapse
Affiliation(s)
- Bingdi Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Zhida Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Chengkun Bai
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Haoqi Yang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
- Roll Forging Research Institute, College of Materials Science and Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Hang Sun
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Guolong Lu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Song Liang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| |
Collapse
|