1
|
Roth WJ, Opanasenko M, Mazur M, Gil B, Čejka J, Sasaki T. Current State and Perspectives of Exfoliated Zeolites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307341. [PMID: 37800413 DOI: 10.1002/adma.202307341] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Zeolites are highly efficient industrial catalysts and sorbents with microporous framework structures. Approximately 10% of the frameworks, but eventually all in the long run, have produced both 3D crystals and 2D layers. The latter can be intercalated and expanded like all 2D materials but proved difficult to exfoliate directly into suspensions of monolayers in solution as precursors for unique synthetic opportunities. Successful exfoliations have been reported recently and are overviewed in this perspective article. The discussion highlights 3 primary challenges in this field, namely finding suitable 2D zeolite preparations that exfoliate directly in high yield, proving uniform layer thickness in solution and identifying applications to exploit the unique synthetic capabilities and properties of exfoliated zeolite monolayers. Four zeolites have been confirmed to exfoliate directly into monolayers: 3 with known structures-MWW, MFI, and RWR and one unknown, bifer with a unit cell close to ferrierite. The exfoliation into monolayers is confirmed by the combination of 5-6 characterization techniques including AFM, in situ and in-plane XRD, and microscopies. The promising areas of development are oriented films and membranes, intimately mixed zeolite phases, and hierarchical nanoscale composites with other active species like nanoparticles and clusters that are unfeasible by solid state processes.
Collapse
Affiliation(s)
- Wieslaw J Roth
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków, 30-387, Poland
| | - Maksym Opanasenko
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 12843, Czech Republic
| | - Michal Mazur
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 12843, Czech Republic
| | - Barbara Gil
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków, 30-387, Poland
| | - Jiří Čejka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 12843, Czech Republic
| | - Takayoshi Sasaki
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
2
|
Priyadharshana PANS, Park JY, Hong SH, Song JK. Multiresponsive Polymer Nanocomposite Liquid Crystals Having Heterogeneous Phase Transitions for Battery-Free Temperature Maintenance Indicators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203551. [PMID: 35988135 DOI: 10.1002/smll.202203551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Multiresponsive functional materials that respond to more than one external stimulus are promising for novel photonic, electronic, and biomedical applications. However, the design or synthesis of new multiresponsive materials is challenging. Here, this work reports a facile method to prepare a multiresponsive colloidal material by mixing a liquid-crystalline 2D nanocolloid and a functional polymer colloid. For this purpose, electrically sensitive exfoliated α-ZrP 2D nanocolloids and thermosensitive block copolymer colloids that are dispersed well in water are mixed. In the liquid-crystalline nanocomposite, nematic, antinematic, or isotropic assemblies of α-ZrP, nanoparticles can be electrically and selectively obtained by applying electric fields with different frequencies; furthermore, their rheology is thermally and reversibly controlled through thesol-gel-sol transition. The nanocomposite exhibits a solid gel phase within a predesigned gel temperature range and a liquid sol phase outside this range. These properties facilitate the design of a simple display device in which information can be electrically written and thermally stabilized or erased, and using the device, a battery-free temperature maintenance indication function is demonstrated. The proposed polymer nanocomposite method can enrich the physical properties of 2D nanocolloidal liquid crystals and create new opportunities for eco-friendly, reusable, battery-free electro-optical devices.
Collapse
Affiliation(s)
- P A N S Priyadharshana
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Jangan-Gu, Suwon, Gyeonggi-do, 16419, Korea
| | - Ju-Young Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Jangan-Gu, Suwon, Gyeonggi-do, 16419, Korea
| | - Seung-Ho Hong
- ICT Research and Education Foundation, Sungkyunkwan University, Jangan-Gu, Suwon, Gyeonggi-do, 16419, Korea
| | - Jang-Kun Song
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Jangan-Gu, Suwon, Gyeonggi-do, 16419, Korea
| |
Collapse
|
3
|
Suzuki R, Yamauchi Y, Sugahara Y. Inorganic material-based Janus nanosheets: asymmetrically functionalized 2D-inorganic nanomaterials. Dalton Trans 2022; 51:13145-13156. [PMID: 35997213 DOI: 10.1039/d2dt01557a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the past decade, various inorganic material-based Janus nanosheets have been prepared and their applications have been proposed. Inorganic material-based Janus nanosheets have various advantages over polymer-based Janus nanosheets, including the maintenance of their characteristic two-dimensional shape, and are expected to be applied as unique functional materials. Methods for regioselective functionalization of the two sides of the individual nanosheets are extremely important for the development of inorganic material-based Janus nanosheets. In this review, the preparation methods and applications of inorganic material-based Janus nanosheets are summarized from the point of view of inorganic nanosheet functionalization.
Collapse
Affiliation(s)
- Ryoko Suzuki
- Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26, Nishi-waseda, Shinjuku-ku, Tokyo 169-0051, Japan. .,Nikon Corporation, 1-10-1, Asamizodai, Minami-ku, Sagamihara, Kanagawa 252-0328, Japan
| | - Yusuke Yamauchi
- Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26, Nishi-waseda, Shinjuku-ku, Tokyo 169-0051, Japan. .,School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshiyuki Sugahara
- Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26, Nishi-waseda, Shinjuku-ku, Tokyo 169-0051, Japan. .,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
4
|
Yamagishi A, Yamamoto S, Takimoto K, Tamura K, Kamon M, Sato F, Sato H. Clay Column Chromatography for Optical Resolution: A Series of Derivatized Amino Acids. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akihiko Yamagishi
- Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
- National Institute of Materials Science, Tsukuba 305-0044, Japan
| | - Shohei Yamamoto
- Department of Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Kazuyoshi Takimoto
- Department of Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Kenji Tamura
- National Institute of Materials Science, Tsukuba 305-0044, Japan
| | - Masumi Kamon
- National Institute of Materials Science, Tsukuba 305-0044, Japan
| | - Fumi Sato
- Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Hisako Sato
- Department of Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
5
|
Nakato T, Sirinakorn T, Ishitobi W, Mouri E, Ogawa M. Cooperative Electric Alignment of Colloidal Graphene Oxide Particles with Liquid Crystalline Niobate Nanosheets. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Teruyuki Nakato
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
- Strategic Research Unit for Innovative Multiscale Materials, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550
| | - Thipwipa Sirinakorn
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Tumbol Payupnai, Amphoe Wangchan, Rayong 21210, Thailand
| | - Wataru Ishitobi
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| | - Emiko Mouri
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
- Strategic Research Unit for Innovative Multiscale Materials, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Tumbol Payupnai, Amphoe Wangchan, Rayong 21210, Thailand
| |
Collapse
|