1
|
Mohammadi M, Soleiman-Beigi M. Unlocking the Nucleophilic Functionalization Potential of a Natural Asphalt: Grafting a Pd(0)-Diethanolamine Complex as a Recyclable Catalyst for Upgrading Biaryl Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:301-313. [PMID: 39745259 DOI: 10.1021/acs.langmuir.4c03523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This study introduces a novel method for functionalizing natural asphalt, presenting new opportunities for upgrading asphaltenes from road to a catalyst. The process utilizes a metal-free sonobromination technique in acetic acid to incorporate carbon-halogen substituents onto natural asphalt. These sites are then targeted by nucleophilic substitution with diethanolamine, followed by complexation with Pd(0) to create a unique palladium complex grafted onto natural asphalt. This stabilized complex serves as a heterogeneous and recoverable catalyst in the Suzuki reaction. This complex facilitates the reaction between aryl boronic acids and various ortho-, meta-, and para-substituted aryl halides under mild conditions using polyethylene glycol-400 as the green solvent. The reaction conversion rate is significantly influenced by the leaving group ability of the halides and the electronic and steric effects of the substituents on both reactants. This environmentally friendly process offers a broad substrate scope (24 examples) and achieves excellent yields of biphenyl derivatives. Notably, it employs a naturally derived catalytic support, underscoring its sustainability. This research potentially unlocks the bonding of nucleophiles to the natural asphalt for developing novel functional materials from this renewable resource.
Collapse
Affiliation(s)
- Masoud Mohammadi
- Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam, Iran
| | | |
Collapse
|
2
|
Khatamian M, Malekani M, Fazayeli M, Yavari A. Improvement of photocatalytic ammonia production of cobalt ferrite nanoparticles utilizing microporous ZSM-5 type ferrisilicate zeolite. Sci Rep 2024; 14:20301. [PMID: 39218929 PMCID: PMC11366750 DOI: 10.1038/s41598-024-71016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The development of decarbonized synthesis approaches is a critical step in the fabrication of ammonia, an indispensable chemical and a potential carbon-neutral energy carrier. In this regard, the photocatalytic production technology has gained ample attention as a sustainable alternative to energy-intensive and environmentally detrimental Haber-Bosch process. Here, we present cobalt ferrite nanoparticles supported on microporous ZSM-5 type ferrisilicate zeolite as a desirable novel photocatalyst for the ammonia generation. The zeolite introduced as a microporous support increasing the catalytically active sites. A straightforward one-pot sol-gel method was used to synthesize cobalt ferrite (CoFe2O4) and CoFe2O4/ferrisilicate (CF/FS) nanocomposites with various weight percentages (10, 25 and 50%) of CoFe2O4. The photocatalytic performances of the samples in the production of ammonia were investigated under visible light irradiation. The highest rate of NH4+ production (484.74 µmol L-1 h-1) was achieved using the CF50%/FS photocatalyst. The distribution of < 50 nm-sized CoFe2O4 nanoparticles on the surface of the zeolite, as demonstrated by TEM images, and extensive BET surface areas are presented as convincing evidences for the improved photocatalytic activity paticularly in CF50%/FS photocatalyst.
Collapse
Affiliation(s)
- Maasoumeh Khatamian
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Mohammad Malekani
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Monireh Fazayeli
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Azin Yavari
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Molaei MJ. Magnetic hyperthermia in cancer therapy, mechanisms, and recent advances: A review. J Biomater Appl 2024; 39:3-23. [PMID: 38606627 DOI: 10.1177/08853282241244707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Hyperthermia therapy refers to the elevating of a region in the body for therapeutic purposes. Different techniques have been applied for hyperthermia therapy including laser, microwave, radiofrequency, ultrasonic, and magnetic nanoparticles and the latter have received great attention in recent years. Magnetic hyperthermia in cancer therapy aims to increase the temperature of the body tissue by locally delivering heat from the magnetic nanoparticles to cancer cells with the aid of an external alternating magnetic field to kill the cancerous cells or prevent their further growth. This review introduces magnetic hyperthermia with magnetic nanoparticles. It includes the mechanism of the operation and magnetism behind the magnetic hyperthermia phenomenon. Different synthesis methods and surface modification to enhance the biocompatibility, water solubility, and stability of the nanoparticles in physiological environments have been discussed. Recent research on versatile types of magnetic nanoparticles with their ability to increase the local temperature has been addressed.
Collapse
Affiliation(s)
- Mohammad Jafar Molaei
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
4
|
Radinekiyan F, Eivazzadeh-Keihan R, Naimi-Jamal MR, Aliabadi HAM, Bani MS, Shojaei S, Maleki A. Design and fabrication of a magnetic nanobiocomposite based on flaxseed mucilage hydrogel and silk fibroin for biomedical and in-vitro hyperthermia applications. Sci Rep 2023; 13:20845. [PMID: 38012184 PMCID: PMC10681992 DOI: 10.1038/s41598-023-46445-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
In this research work, a magnetic nanobiocomposite is designed and presented based on the extraction of flaxseed mucilage hydrogel, silk fibroin (SF), and Fe3O4 magnetic nanoparticles (Fe3O4 MNPs). The physiochemical features of magnetic flaxseed mucilage hydrogel/SF nanobiocomposite are evaluated by FT-IR, EDX, FE-SEM, TEM, XRD, VSM, and TG technical analyses. In addition to chemical characterization, given its natural-based composition, the in-vitro cytotoxicity and hemolysis assays are studied and the results are considerable. Following the use of highest concentration of magnetic flaxseed mucilage hydrogel/SF nanobiocomposite (1.75 mg/mL) and the cell viability percentage of two different cell lines including normal HEK293T cells (95.73%, 96.19%) and breast cancer BT549 cells (87.32%, 86.9%) in 2 and 3 days, it can be inferred that this magnetic nanobiocomposite is biocompatible with HEK293T cells and can inhibit the growth of BT549 cell lines. Besides, observing less than 5% of hemolytic effect can confirm its hemocompatibility. Furthermore, the high specific absorption rate value (107.8 W/g) at 200 kHz is generated by a determined concentration of this nanobiocomposite (1 mg/mL). According to these biological assays, this magnetic responsive cytocompatible composite can be contemplated as a high-potent substrate for further biomedical applications like magnetic hyperthermia treatment and tissue engineering.
Collapse
Affiliation(s)
- Fateme Radinekiyan
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.
| | | | - Milad Salimi Bani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Shirin Shojaei
- Medical School of Pharmacy, Nanotechnology Department, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
5
|
Naderi N, Lalebeigi F, Sadat Z, Eivazzadeh-Keihan R, Maleki A, Mahdavi M. Recent advances on hyperthermia therapy applications of carbon-based nanocomposites. Colloids Surf B Biointerfaces 2023; 228:113430. [PMID: 37418814 DOI: 10.1016/j.colsurfb.2023.113430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/10/2023] [Accepted: 06/25/2023] [Indexed: 07/09/2023]
Abstract
Generally, hyperthermia is referred to the composites capability to increase local temperature in such a way that the generated heat would lead to cancerous or bacteria cells destruction, with minimum damage to normal tissue cells. Many different materials have been utilized for hyperthermia application via different heat generating methods. Carbon-based nanomaterials consisting of graphene oxide (GO), carbon nanotube (CNT), carbon dot (CD) and carbon quantum dot (CQD), nanodiamond (ND), fullerene and carbon fiber (CF), have been studied significantly for different applications including hyperthermia due to their biocompatibility, biodegradability, chemical and physical stability, thermal and electrical conductivity and in some cases photothermal conversion. Therefore, in this comprehensive review, a structure-based view on carbon nanomaterials application in hyperthermia therapy of cancer and bacteria via various methods such as optical, magnetic, ultrasonic and radiofrequency-induced hyperthermia is presented.
Collapse
Affiliation(s)
- Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Ganjali F, Gorab MG, Moghim Aliabadi HA, Rahmati S, Cohan RA, Eivazzadeh-Keihan R, Maleki A, Ghafuri H, Mahdavi M. A novel nanocomposite containing zinc ferrite nanoparticles embedded in carboxymethylcellulose hydrogel plus carbon nitride nanosheets with multifunctional bioactivity. RSC Adv 2023; 13:21873-21881. [PMID: 37475756 PMCID: PMC10354627 DOI: 10.1039/d3ra02822d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023] Open
Abstract
A novel and biologically active nanobiocomposite is synthesized based on carbon nitride nanosheet (g-C3N4) based carboxymethylcellulose hydrogels with embedded zinc ferrite nanoparticles. Physical-chemical aspects, morphological properties, and their multifunctional biological properties have been considered in the process of evaluation of the synthesized structure. The hydrogels' compressive strength and compressive modulus are 1.98 ± 0.03 MPa and 3.46 ± 0.05 MPa, respectively. Regarding the biological response, it is shown that the nanobiocomposite is non-toxic and biocompatible, and hemocompatible (with Hu02 cells). In addition, the developed material offers a suitable antibacterial activity for both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mostafa Ghafori Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | | | - Saman Rahmati
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran Tehran Iran
| | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran Tehran Iran
| | - Reza Eivazzadeh-Keihan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran Tehran Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
7
|
Mobasheri K, Zaefizadeh M, Ghobeh M, Eidi A. Synthesis of Novel Magnetic Quercetin-Neuropeptide Nanocomposite as a Smart Nano-Drug Shuttle System: Investigation of Its Effect on Behavior, Histopathological Characteristics, and Expression of MAPT and APP Genes in Alzheimer's Disease Rats. J Alzheimers Dis 2023:JAD221095. [PMID: 37393494 DOI: 10.3233/jad-221095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia. The drugs introduced for this disease have many side effects and limitations in use, so the production of a suitable herbal medicine to cure AD patients is essential. OBJECTIVE The aim of this research is to make a magnetic neuropeptide nano shuttle as a targeted carrier for the transfer of quercetin to the brains of AD model rats. METHODS In this work, a magnetic quercetin-neuropeptide nanocomposite (MQNPN) was fabricated and administered to the rat's brain by the shuttle drug of the Margatoxin scorpion venom neuropeptide, and will be a prospect for targeted drug delivery in AD. The MQNPN has been characterized by FTIR, spectroscopy, FE-SEM, XRD, and VSM. Investigations into the efficacy of MQNPN, MTT, and real Time PCR for MAPT and APP genes expression were performed. After 7 days treatment with Fe3O4 (Ctr) and MQNPN treatment in AD rat, superoxide dismutase activity and quercetin in blood serum and brain was detected. Hematoxylin-Eosin staining was applied for histopathological analysis. RESULTS Analysis of data showed that MQNPN increased the activity of superoxide dismutase. The histopathology results of the hippocampal region of AD rats also confirmed their improvement after treatment with MQNPN. MQNPN treatment caused a significant decrease in the relative expression of MAPT and APP genes. CONCLUSION MQNPN is a suitable carrier for the transfer of quercetin to the rat hippocampus, and has a significant effect in reducing AD symptoms in terms of histopathology, behavioral testing, and changing the expression of AD-related genes.
Collapse
Affiliation(s)
- Kamelia Mobasheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Zaefizadeh
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Eivazzadeh-Keihan R, Sadat Z, Mohammadi A, Aghamirza Moghim Aliabadi H, Kashtiaray A, Maleki A, Mahdavi M. Fabrication and biological investigation of a novel star polymer based on magnetic cyclic aromatic polyimide chains. Sci Rep 2023; 13:9598. [PMID: 37311979 DOI: 10.1038/s41598-023-36619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
Herein, a novel nanostructure based on cyclic aromatic polyimide with statistical star polymer structure was synthesized via the functionalization of the CuFe2O4 MNPs surface. The polymerization process on the functionalized surface of CuFe2O4 MNPs was performed with pyromellitic dianhydride and phenylenediamine derivatives. All analytical methods such as Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) analysis, X-ray diffraction (XRD) pattern, energy-dispersive X-ray (EDX), field-emission scanning electron microscope (FE-SEM), vibrating-sample magnetometer (VSM) were performed to characterize the structure of CuFe2O4@SiO2-polymer nanomagnetic. The cytotoxicity of CuFe2O4@SiO2-Polymer was investigated for biomedical application by MTT test. The results proved that this nanocmposite was biocompatible with HEK293T healthy cells. Also, the evaluation antibacterial property of CuFe2O4@SiO2-Polymer showed that its MIC in Gram-negative and Gram-positive bacteria were 500-1000 µg/mL, so it had antibacterial activity.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | | | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ge X, Li H, Zheng H, Zheng P, Zheng L, Zhang Y. Electromagnetic Performance of NiMgCuZn Ferrite for Hyperthermia Application in Cancer Treatment. ACS OMEGA 2023; 8:16647-16655. [PMID: 37214667 PMCID: PMC10193416 DOI: 10.1021/acsomega.2c07394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/26/2023] [Indexed: 05/24/2023]
Abstract
Ferrite with high permeability, high magnetic loss, and a low Curie temperature is a highly promising material for hyperthermia applications in cancer treatment. In this work, Ni(0.29-x)MgxCu0.14Zn0.60Fe1.94O3.94 (NiMgCuZn) ferrites were prepared at different Mg ion concentrations. The dependence of the Mg ion contents on the crystal structure, magnetic, and permeability properties of NiMgCuZn ferrite was investigated. Structural characterization showed a high crystallinity of the materials and an increase in the lattice constant with the Mg ion content. The magnetic hysteresis loops revealed that the saturation magnetization decreased with an increasing Mg content. Furthermore, the permeability measurements showed an increase in permeability and magnetic loss with the doping of Mg. More importantly, the Curie temperature of the NiMgCuZn ferrite decreases with the Mg ion content and reaches 42.37 °C for x = 0.26 as well as a real permeability of ∼797.88@1 MHz and a magnetic loss of 0.316@1 MHz, which meet the requirements of tumor hyperthermia.
Collapse
|
10
|
Govindan B, Sabri MA, Hai A, Banat F, Haija MA. A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics 2023; 15:868. [PMID: 36986729 PMCID: PMC10058002 DOI: 10.3390/pharmaceutics15030868] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023] Open
Abstract
The new era of nanomedicine offers significant opportunities for cancer diagnostics and treatment. Magnetic nanoplatforms could be highly effective tools for cancer diagnosis and treatment in the future. Due to their tunable morphologies and superior properties, multifunctional magnetic nanomaterials and their hybrid nanostructures can be designed as specific carriers of drugs, imaging agents, and magnetic theranostics. Multifunctional magnetic nanostructures are promising theranostic agents due to their ability to diagnose and combine therapies. This review provides a comprehensive overview of the development of advanced multifunctional magnetic nanostructures combining magnetic and optical properties, providing photoresponsive magnetic platforms for promising medical applications. Moreover, this review discusses various innovative developments using multifunctional magnetic nanostructures, including drug delivery, cancer treatment, tumor-specific ligands that deliver chemotherapeutics or hormonal agents, magnetic resonance imaging, and tissue engineering. Additionally, artificial intelligence (AI) can be used to optimize material properties in cancer diagnosis and treatment, based on predicted interactions with drugs, cell membranes, vasculature, biological fluid, and the immune system to enhance the effectiveness of therapeutic agents. Furthermore, this review provides an overview of AI approaches used to assess the practical utility of multifunctional magnetic nanostructures for cancer diagnosis and treatment. Finally, the review presents the current knowledge and perspectives on hybrid magnetic systems as cancer treatment tools with AI models.
Collapse
Affiliation(s)
- Bharath Govindan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
11
|
Dagdelen S, Mackiewicz M, Osial M, Waleka-Bargiel E, Romanski J, Krysinski P, Karbarz M. Redox-responsive degradable microgel modified with superparamagnetic nanoparticles exhibiting controlled, hyperthermia-enhanced drug release. JOURNAL OF MATERIALS SCIENCE 2023; 58:4094-4114. [DOI: 10.1007/s10853-023-08168-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/07/2023] [Indexed: 01/06/2025]
Abstract
AbstractA novel degradable microgel based on poly(N-isopropylacrylamide) (pNIPA) cross-linked with N,N’-bisacryloylcystine (BISS) and containing superparamagnetic iron oxide nanoparticles (SPION@CA) was synthesized by semi-batch precipitation polymerization and examined as a potential hyperthermia-enhanced drug carrier. The pNIPA provided the microgel with temperature sensitivity, the BISS was responsible for degradation in the presence of glutathione (GSH) (an –S–S–bond reductor naturally present in cells), while the SPION@CA permitted remote control of temperature to improve drug release. The microgels exhibited volume phase transition temperature at ca. 34 °C, which is near the human body temperature, and were stable across a wide range of temperatures and ionic strengths, as well as in the blood plasma at 37 °C. It was found that the presence of SPION@CA in the polymer network of the microgels enabled the temperature to be increased up to 42 °C by an alternating magnetic field, and that increasing the temperature from 37 to 42 °C significantly enhanced the releasing of the anticancer drug doxorubicin (DOX). The highest DOX release (82%) was observed at pH 5, 42 °C, and in the presence of GSH, and the lowest (20%) at pH 7.4, 37 °C, and in the absence of GSH. MTT assay indicated that compared to free doxorubicin, the microgel particles loaded with doxorubicin have comparable cytotoxicity against MCF-7 cancer cells while being significantly less toxic to MCF-10A healthy cells.
Graphical abstract
Collapse
|
12
|
Magnetic chitosan-silk fibroin hydrogel/graphene oxide nanobiocomposite for biological and hyperthermia applications. Carbohydr Polym 2023; 300:120246. [DOI: 10.1016/j.carbpol.2022.120246] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
13
|
Liu X, Wang Y, Wu S, Jiang W, Zeng R, Cao H. Four-Component Cyclization of Naphthol/Thionaphthol/Naphthylamine, Formaldehyde, and DBU in Water. J Org Chem 2022; 87:13819-13827. [PMID: 36223276 DOI: 10.1021/acs.joc.2c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical and environmentally benign cascade multicomponent condensation of naphthol/thionaphthol/naphthylamine, formaldehyde, and DBU in water without any catalysts has been achieved. A wide variety of dihydrooxazine, dihydrothiazine, and tetrahydrobenzoquinazoline derivatives N-substituted with a tether bearing a caprolactam unit were afforded in moderate to good yields. The advantages of being cost-effective, metal-free, and easily handled and the use of water as medium made this protocol conform with the principle of green synthesis.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Yuhan Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Songxin Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Wenxuan Jiang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Ruyi Zeng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| |
Collapse
|
14
|
Eivazzadeh-Keihan R, Farrokhi-Hajiabad F, Aliabadi HAM, Ziabari EZ, Geshani S, Kashtiaray A, Bani MS, Pishva B, Cohan RA, Maleki A, Mahdavi M. A novel magnetic nanocomposite based on alginate-tannic acid hydrogel embedded with silk fibroin with biological activity and hyperthermia application. Int J Biol Macromol 2022; 224:1478-1486. [DOI: 10.1016/j.ijbiomac.2022.10.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
|
15
|
Eivazzadeh-Keihan R, Sadat Z, Aghamirza Moghim Aliabadi H, Ganjali F, Kashtiaray A, Salimi Bani M, Komijani S, Ahadian MM, salehpour N, Ahangari Cohan R, Maleki A. Fabrication of a magnetic alginate-silk fibroin hydrogel, containing halloysite nanotubes as a novel nanocomposite for biological and hyperthermia applications. Sci Rep 2022; 12:15431. [PMID: 36104466 PMCID: PMC9474815 DOI: 10.1038/s41598-022-19511-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
In this study, the main focus was on designing and synthesizing a novel magnetic nanobiocomposite and its application in hyperthermia cancer treatment. Regarding this aim, sodium alginate (SA) hydrogel with CaCl2 cross-linker formed and modified by silk fibroin (SF) natural polymer and halloysite nanotubes (HNTs), followed by in situ Fe3O4 magnetic nanoparticles preparation. No important differences were detected in red blood cells (RBCs) hemolysis, confirming the high blood compatibility of the treated erythrocytes with this nanobiocomposite. Moreover, the synthesized SA hydrogel/SF/HNTs/Fe3O4 nanobiocomposite does not demonstrate toxicity toward HEK293T normal cell line after 48 and 72 h. The anticancer property of SA hydrogel/SF/HNTs/Fe3O4 nanobiocomposites against breast cancer cell lines was corroborated. The magnetic saturation of the mentioned magnetic nanobiocomposite was 15.96 emu g−1. The specific absorption rate (SAR) was measured to be 22.3 W g−1 by applying an alternating magnetic field (AMF). This novel nanobiocomposite could perform efficiently in the magnetic fluid hyperthermia process, according to the obtained results.
Collapse
|
16
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
17
|
Structural, dc electrical resistivity and magnetic investigation of Mg, Ni, and Zn substituted Co-Cu nano spinel ferrites. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Aghajanian AH, Bigham A, Sanati A, Kefayat A, Salamat MR, Sattary M, Rafienia M. A 3D macroporous and magnetic Mg 2SiO 4-CuFe 2O 4 scaffold for bone tissue regeneration: Surface modification, in vitro and in vivo studies. BIOMATERIALS ADVANCES 2022; 137:212809. [PMID: 35929249 DOI: 10.1016/j.bioadv.2022.212809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Macroporous scaffolds with bioactivity and magnetic properties can be a good candidate for bone regeneration and hyperthermia. In addition, modifying the surface of the scaffolds with biocompatible materials can increase their potential for in vivo applications. Here, we developed a multifunctional nanocomposite Mg2SiO4-CuFe2O4 scaffold for bone regeneration and hyperthermia. The surface of scaffold was coated with various concentrations of poly-3-hydroxybutyrate (P3HB, 1-5% (w/v)). It was observed that 3% (w/v) of P3HB provided a favorable combination of porosity (79 ± 2.1%) and compressive strength (3.2 ± 0.11 MPa). The hyperthermia potential of samples was assessed in the presence of various magnetic fields in vitro. The coated scaffolds showed a lower degradation rate than the un-coated one up to 35 days of soaking in simulated biological medium. Due to the porous and specific morphology of P3HB, it was found that in vitro bioactivity and cell attachment were increased on the scaffold. Moreover, it was observed that the P3HB coating improved the cell viability, alkaline phosphatase activity, and mineralization of the scaffold. Finally, we studied the bone formation ability of the scaffolds in vivo, and implanted the developed scaffold in the rat's femur for 8 weeks. Micro-computed tomography results including bone volume fraction and trabecular thickness exhibited an improvement in the bone regeneration of the coated scaffold compared to the control. The overall results of this study introduce a highly macroporous scaffold with multifunctional performance, noticeable ability in bone regeneration, and hyperthermia properties for osteosarcoma.
Collapse
Affiliation(s)
- Amir Hamed Aghajanian
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine (ATiM), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J.F. Kennedy 54-Mostra d'Oltremare pad. 20, 80125 Naples, Italy
| | - Alireza Sanati
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhosein Kefayat
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Cancer Prevention Research Center, Department of Oncology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Salamat
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoureh Sattary
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine (ATiM), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
19
|
Eivazzadeh-Keihan R, Zare-Bakheir E, Aliabadi HAM, Gorab MG, Ghafuri H, Maleki A, Madanchi H, Mahdavi M. A novel, bioactive and antibacterial scaffold based on functionalized graphene oxide with lignin, silk fibroin and ZnO nanoparticles. Sci Rep 2022; 12:8770. [PMID: 35610263 PMCID: PMC9130258 DOI: 10.1038/s41598-022-12283-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a novel nanobiocomposite was synthesized using graphene oxide, lignin, silk fibroin and ZnO and used in biological fields. To synthesize this structure, after preparing graphene oxide by the Hummer method, lignin, silk fibroin, and ZnO nanoparticles (NPs) were added to it, respectively. Also, ZnO NPs with a particle size of about 18 nm to 33 nm was synthesized via Camellia sinensis extract by green methodology. The synthesized structure was examined as anti-biofilm agent and it was observed that the Graphene oxide-lignin/silk fibroin/ZnO nanobiocomposite has a significant ability to prevent the formation of P. aeruginosa biofilm. In addition, due to the importance of the possibility of using this structure in biological environments, its toxicity and blood compatibility were also evaluated. According to the obtained results from MTT assay, the viability percentages of Hu02 cells treated with Graphene oxide-lignin/silk fibroin/ZnO nanobiocomposite after 24, 48, and 72 h of incubation were 89.96%, 89.32%, and 91.28%. On the other hand, the hemolysis percentage of the synthesized structure after 24 h and 72 h of extraction was 9.5% and 11.76% respectively. As a result, the synthesized structure has a hemolysis percentage below 12% and its toxicity effect on Hu02 cells is below 9%.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ensiye Zare-Bakheir
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Advanced Chemistry Studies Lab, Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Mostafa Ghafori Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Bayzidi M, Zeynizadeh B. A uniformly anchored zirconocene complex on magnetic reduced graphene oxide (rGO@Fe 3O 4/ZrCp 2Cl x (x = 0, 1, 2)) as a novel and reusable nanocatalyst for synthesis of N-arylacetamides and reductive-acetylation of nitroarenes. RSC Adv 2022; 12:15020-15037. [PMID: 35702429 PMCID: PMC9112892 DOI: 10.1039/d2ra02293a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a crafted zirconocene complex on rGO@Fe3O4 as a novel magnetic nanocatalyst was synthesized and then characterized using FT-IR, SEM, EDX, VSM, ICP-OES, TGA, BET and MS analyses. Next, catalytic activity of the prepared nanocomposite rGO@Fe3O4/ZrCp2Cl x (x = 0, 1, 2) towards successful reduction of aromatic nitro compounds to arylamines using N2H4·H2O (80%) was investigated. The examined nanocatalyst also showed perfect catalytic activity for reductive-acetylation of aromatic nitro compounds to the corresponding N-arylacetamides without isolation of the prepared in situ amines using the N2H4·H2O/Ac2O system. Furthermore, acetylation of the commercially available arylamines to the corresponding N-arylacetamides was carried out by acetic anhydride in the presence of the rGO@Fe3O4/ZrCp2Cl x (x = 0, 1, 2) nanocomposite. All reactions were carried out in refluxing EtOH as a green solvent to afford the products in high yields. The obtained results exhibited that the nanocomposite of rGO@Fe3O4/ZrCp2Cl x (x = 0, 1, 2) showed a great catalytic activity in comparison to rGO and rGO@Fe3O4 as the parent constituents. Recovery and reusability of rGO@Fe3O4/ZrCp2Cl x (x = 0, 1, 2) were also examined for 8 consecutive cycles without significant loss of the catalytic activity. This establishes the sustainable anchoring of the zirconocene complex on the surface and mesopores of the rGO@Fe3O4 nanohybrid system.
Collapse
Affiliation(s)
- Massood Bayzidi
- Department of Chemistry, Urmia University Urmia 5756151818 Iran
| | | |
Collapse
|
21
|
Babaniamansour P, Salimi M, Dorkoosh F, Mohammadi M. Magnetic Hydrogel for Cartilage Tissue Regeneration as well as a Review on Advantages and Disadvantages of Different Cartilage Repair Strategies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7230354. [PMID: 35434125 PMCID: PMC9012656 DOI: 10.1155/2022/7230354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 01/21/2023]
Abstract
There is a clear clinical need for efficient cartilage healing strategies for treating cartilage defects which burdens millions of patients physically and financially. Different strategies including microfracture technique, osteochondral transfer, and scaffold-based treatments have been suggested for curing cartilage injuries. Although some improvements have been achieved in several facets, current treatments are still less than satisfactory. Recently, different hydrogel-based biomaterials have been suggested as a therapeutic candidate for cartilage tissue regeneration due to their biocompatibility, high water content, and tunability. Specifically, magnetic hydrogels are becoming more attractive due to their smart response to magnetic fields remotely. We seek to outline the context-specific regenerative potential of magnetic hydrogels for cartilage tissue repair. In this review, first, we explained conventional techniques for cartilage repair and then compared them with new scaffold-based approaches. We illustrated various hydrogels used for cartilage regeneration by highlighting the magnetic hydrogels. Also, we gathered in vitro and in vivo studies of how magnetic hydrogels promote chondrogenesis as well as studied the biological mechanism which is responsible for cartilage repair due to the application of magnetic hydrogel.
Collapse
Affiliation(s)
- Parto Babaniamansour
- Department of Biomedical Engineering, AmirKabir University of Technology, Tehran, Iran
| | - Maryam Salimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Dorkoosh
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi
- Department of Biomedical Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
22
|
Kim M, You J, Park JH, Bang J, Lee SS. Novel wet-free interfacial affinity modulation of non-polar polymers for imparting efficient heat transfer capability to incompatible polypropylene/graphite nanoplatelet composite. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
|
24
|
Eivazzadeh-Keihan R, Asgharnasl S, Moghim Aliabadi HA, Tahmasebi B, Radinekiyan F, Maleki A, Bahreinizad H, Mahdavi M, Alavijeh MS, Saber R, Lanceros-Méndez S, Shalan AE. Magnetic graphene oxide-lignin nanobiocomposite: a novel, eco-friendly and stable nanostructure suitable for hyperthermia in cancer therapy. RSC Adv 2022; 12:3593-3601. [PMID: 35425373 PMCID: PMC8979318 DOI: 10.1039/d1ra08640e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
In this research, a novel magnetic nanobiocomposite was designed and synthesized in a mild condition, and its potential in an alternating magnetic field was evaluated for hyperthermia applications. For this purpose, in the first step, graphene oxide was functionalized with a natural lignin polymer using epichlorohydrin as the cross-linking agent. In the second step, the designed magnetic graphene oxide-lignin nanobiocomposite was fabricated by the in situ preparation of magnetic Fe3O4 nanoparticles in the presence of graphene oxide functionalized with lignin. The resultant magnetic nanobiocomposite possessed certain main properties, including stability and homogeneity in aqueous solutions, making it suitable for hyperthermia applications. The chemical and structural properties of the synthesized magnetic graphene oxide-lignin composite were characterized using FT-IR, EDX, FE-SEM, TEM, TG and VSM analyses. The saturation magnetization value of this magnetic nanocomposite was recorded as 17.2 emu g-1. Further, the maximum specific absorption rate was determined to be 121.22 W g-1. Given these results, this newly fabricated magnetic nanobiocomposite may achieve considerable performance under the alternating magnetic field in fluid hyperthermia therapy.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Somayeh Asgharnasl
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran Tehran Iran
- Advanced Chemistry Studies Lab, Department of Chemistry, K. N. Toosi University of Technology Tehran Iran
| | - Behnam Tahmasebi
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Hossein Bahreinizad
- Mechanical Engineering Department, Sahand University of Technology Tabriz Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | | | - Reza Saber
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences Tehran Iran
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n Leioa 48940 Spain
- IKERBASQUE, Basque Foundation for Science 48009 Bilbao Spain
| | - Ahmed Esmail Shalan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n Leioa 48940 Spain
- Central Metallurgical Research and Development Institute (CMRDI) P. O. Box 87, Helwan Cairo 11421 Egypt
| |
Collapse
|
25
|
Engineering of combination drug delivery of pH/reduction response potential nanocarrier for the treatment of liver cancer. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02312-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Abu Elella MH, Shalan AE, Sabaa MW, Mohamed RR. One-pot green synthesis of antimicrobial chitosan derivative nanocomposites to control foodborne pathogens. RSC Adv 2021; 12:1095-1104. [PMID: 35425120 PMCID: PMC8978815 DOI: 10.1039/d1ra07070c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022] Open
Abstract
Food contamination by foodborne pathogens is considered a serious problem worldwide. This study aimed to show the efficacy of the one-pot green biosynthesis of nanocomposites as effective antimicrobial agents based on a water-soluble biodegradable polysaccharide and silver nitrate (AgNO3). Silver (Ag) nanoparticles were synthesized using different concentrations of AgNO3 solution (1, 2, and 3 mM) in the presence of N-quaternized chitosan and N,N,N-trimethyl chitosan chloride (TMC) as both a reducing and stabilizing agent. In addition, the structure of TMC/Ag nanocomposites was confirmed using different analytical tools including FTIR, UV-Vis, XRD, HR-TEM, FE-SEM, and EDX techniques. The FTIR spectra and UV-Vis spectra showed the main characteristic absorption peaks of Ag nanoparticles. In addition, FE-SEM images showed the formation of spherical bead-like particles on the surface of TMC. Correspondingly, the EDX spectrum showed a peak for silver, indicating the successful synthesis of Ag nanoparticles inside the TMC chains. Moreover, HR-TEM images exhibited the good distribution of Ag nanoparticles, which appeared as nano-spherical shapes. The antimicrobial activity of TMC/Ag nanocomposites was examined against three foodborne pathogens, including Salmonella Typhimurium as a Gram-negative bacterium, Bacillus subtilis as a Gram-positive bacterium and Aspergillus fumigatus as a fungus. The results showed that TMC/Ag nanocomposites had better antimicrobial activity compared with TMC alone and their antimicrobial activity increased with an increase in the concentration of Ag. The results confirmed that the TMC/Ag nanocomposites can be potentially used as an effective antimicrobial agent in food preservation. This study aimed to show the efficacy of the one-pot green biosynthesis of nanocomposites as effective antimicrobial agents based on a water-soluble biodegradable polysaccharide and silver nitrate (AgNO3).![]()
Collapse
Affiliation(s)
| | - Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI) P. O. Box 87, Helwan Cairo 11421 Egypt .,BCMaterials, Basque Center for Materials, Applications and Nanostructures Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n Leioa 48940 Spain
| | - Magdy W Sabaa
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Riham R Mohamed
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| |
Collapse
|
27
|
Chen HW, Huang CY, Shu GJ, Liu HL. Temperature-dependent optical properties of CuFeO 2 through the structural phase transition. RSC Adv 2021; 11:40173-40181. [PMID: 35494107 PMCID: PMC9044534 DOI: 10.1039/d1ra08096b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022] Open
Abstract
Delafossite CuFeO2 has recently attracted considerable attention because of its complex phase transitions and practical applications. A thorough understanding of the optical properties of CuFeO2 is essential for its further exploration. In this paper, we investigated the temperature-dependent optical properties of CuFeO2 single crystals through Raman scattering spectroscopy and spectroscopic ellipsometry. The room temperature Raman scattering spectrum exhibited six phonon modes at approximately 352, 509, 692, 1000, 1052, and 1171 cm−1. Upon cooling across 11 K, which is the rhombohedral to monoclinic structural phase transition temperature, a softening of the Eg-symmetry 352 cm−1 mode and a hardening of the A1g-symmetry 692 cm−1 mode were observed. Moreover, analysis of the temperature-dependent real part of the dielectric function and direct band gap revealed anomalies at 11 K. These results demonstrate a profound connection between the structural phase transition, lattice dynamics, and electronic structure of CuFeO2 and provide key information for CuFeO2-based device design and fabrication. Delafossite CuFeO2 has recently attracted considerable attention because of its complex phase transitions and practical applications.![]()
Collapse
Affiliation(s)
- Hsiao-Wen Chen
- Department of Physics, National Taiwan Normal University Taipei 116059 Taiwan
| | - Chu-Yun Huang
- Institue of Mineral Resources Engineering, National Taipei University of Technology Taipei 106344 Taiwan
| | - Guo-Jiun Shu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology Taipei 106344 Taiwan.,Institue of Mineral Resources Engineering, National Taipei University of Technology Taipei 106344 Taiwan.,Taiwan Consortium of Emergent Crystalline Materials, Ministry of Science and Technology Taipei 106214 Taiwan
| | - Hsiang-Lin Liu
- Department of Physics, National Taiwan Normal University Taipei 116059 Taiwan
| |
Collapse
|