1
|
Fan Y, Gan C, Li Y, Kang L, Yi J. Fabrication of bovine serum albumin nanofibrils: Physicochemical characteristics, emulsifying and foaming activities. Int J Biol Macromol 2024; 271:132549. [PMID: 38782331 DOI: 10.1016/j.ijbiomac.2024.132549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Bovine serum albumin nanofibrils (BSNs) were fabricated under thermal treatment (85 °C) at acidic condition (pH 2.0) and the incubation time on the structural, and physicochemical characteristics were probed. The formation and development of BSNs have been detected and confirmed by Thioflavin T (ThT) fluorescence and circular dichroism (CD) measurements. The structural alterations of bovine serum albumin (BSA) have also been investigated using intrinsic fluorescence and Congo red (CGR) UV-vis spectroscopy. Atomic force microscopy (AFM) outcomes displayed the morphologies of BSNs at varied time, with a diameter of about 3 nm and a contour length of about 200 nm at 24 h. The apparent viscosities of BSNs at three different pH were in the following order: pH 3.0 > pH 5.0 > pH 7.0. Emulsifying and foaming properties of BSA were pronouncedly enhanced through fibrillation, which was highly correlated with the interfacial properties and structural characteristics. Highest EAI 54.2 m2/g was attained at 48 h and no pronounced alterations were observed for EAI at 24 h and 48 h. Maximum value of FC was obtained at 48 h for BSA. This study will provide some useful information in understanding the formation of BSNs and broaden their application in food systems as functional food ingredients.
Collapse
Affiliation(s)
- Yuting Fan
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Chao Gan
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanmei Li
- Yining Customs Technology Center, Yining, Xinjiang 835000, China
| | - Ling Kang
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiang Yi
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Singh G, Dasanayake GS, Chism CM, Vashisth P, Kaur A, Misra SK, Sharp JS, Tanner EEL. Good's Buffer Based Highly Biocompatible Ionic Liquid Modified PLGA Nanoparticles for the Selective Uptake in Cancer Cells. MATERIALS CHEMISTRY FRONTIERS 2023; 7:6213-6228. [PMID: 38204762 PMCID: PMC10776129 DOI: 10.1039/d3qm00787a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Achieving safe and efficacious drug delivery is still an outstanding challenge. Herein we have synthesized 20 biocompatible Good's buffer-based ionic liquids (GBILs) with a range of attractive properties for drug delivery applications. The synthesized GBILs were used to coat the surface of poly(lactic-co-glycolic acid) (PLGA) by nanoprecipitation-sonication and characterized by dynamic light scattering (DLS) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The GBIL-modified PLGA NPs were then tested for their interaction with bio-interfaces such as serum proteins (using SDS-PAGE and LCMS) and red blood cells (RBCs) isolated from human and BALB/c mouse blood. In this report, we show that surface modification of PLGA with certain GBILs led to modulation of preferential cellular uptake towards human triple-negative breast cancer cells (MDA-MB-231) compared to human normal healthy breast cells (MCF-10A). For example, cholinium N,N-bis(2-hydroxyethyl)-2-aminoethane sulfonate (CBES) coated PLGA NPs were found to be selective for MDA-MB-231 cells (60.7 ± 0.7 %) as compared to MCF-10A cells (27.3 ± 0.7 %). In this way, GBIL-coatings have increased PLGA NP uptake in the cancer cells by 2-fold while decreasing the uptake towards normal healthy breast cells. Therefore, GBIL-modified nanoparticles could be a versatile platform for targeted drug delivery and gene therapy applications, as their surface properties can be tailored to interact with specific cell receptors and enhance cellular uptake. This formulation technique has shown promising results for targeting specific cells, which could be explored further for other cell types to achieve site-specific and efficient delivery of therapeutic agents.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| | - Gaya S. Dasanayake
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| | - Claylee M. Chism
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| | - Priyavrat Vashisth
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| | - Amandeep Kaur
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| | - Sandeep Kumar Misra
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677
| | - Joshua S. Sharp
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677
| | - Eden E. L. Tanner
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| |
Collapse
|
3
|
Hu Y, Xing Y, Yue H, Chen T, Diao Y, Wei W, Zhang S. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities. Chem Soc Rev 2023; 52:7262-7293. [PMID: 37751298 DOI: 10.1039/d3cs00510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Ionic liquids (ILs), due to their inherent structural tunability, outstanding miscibility behavior, and excellent electrochemical properties, have attracted significant research attention in the biomedical field. As the application of ILs in biomedicine is a rapidly emerging field, there is still a need for systematic analyses and summaries to further advance their development. This review presents a comprehensive survey on the utilization of ILs in the biomedical field. It specifically emphasizes the diverse structures and properties of ILs with their relevance in various biomedical applications. Subsequently, we summarize the mechanisms of ILs as potential drug candidates, exploring their effects on various organisms ranging from cell membranes to organelles, proteins, and nucleic acids. Furthermore, the application of ILs as extractants and catalysts in pharmaceutical engineering is introduced. In addition, we thoroughly review and analyze the applications of ILs in disease diagnosis and delivery systems. By offering an extensive analysis of recent research, our objective is to inspire new ideas and pathways for the design of innovative biomedical technologies based on ILs.
Collapse
Affiliation(s)
- Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Ravikanth Reddy R, Saha D, Pan A, Aswal VK, Mati SS, Moulik SP, Phani Kumar BVN. pH-Induced Biophysical Perspectives of Binding of Surface-Active Ionic Liquid [BMIM][OSU] with HSA and Dynamics of the Formed Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3729-3741. [PMID: 36857652 DOI: 10.1021/acs.langmuir.2c03472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The influence of pH on the human serum albumin (HSA) interaction with ionic liquid (IL)1-butyl 3-methylimidazolium octyl sulfate ([BMIM][OSU]) at its sub-micellar concentration of 5 mM (well below CMC ∼31 mM at 25 °C) in aqueous solution has been monitored employing different methods, viz., circular dichroism (CD), fluorescence, electrokinetic determination of the zeta potential (ZP), nuclear magnetic resonance (NMR), small-angle neutron scattering (SANS), and molecular docking (MD). CD analysis indicated a noticeable reduction of the α-helical content of HSA by IL at pH 3. A significant interaction of the anionic part of IL with HSA was evident from the 1H chemical shifts and saturation transfer difference (STD) NMR. A strong binding between IL and HSA was observed at pH 3 relative to pH 5, revealing the importance of electrostatic and hydrophobic interactions assessed from global binding affinities and molecular correlation times derived from STD NMR and a combined selective/nonselective spin-relaxation analysis, respectively. ZP data supported the electrostatic interaction between HSA and the anionic part of IL. The nature of IL self-diffusion with HSA was assessed from the translational self-diffusion coefficients by pulse field gradient NMR. SANS results revealed the formation of prolate ellipsoidal geometry of the IL-HSA complex. MD identified the preferential binding sites of IL to the tryptophan centers on HSA. The association of IL with HSA was supported by fluorescence measurements, in addition to the structural changes that occurred in the protein by the interaction with IL. The anionic part of IL contributed a major interaction with HSA at the pH levels of study (3, 5, 8, and 11.4); at pH > 8 (effectively 11.4), the protein also interacted weakly with the cationic component of IL.
Collapse
Affiliation(s)
- R Ravikanth Reddy
- NMR, Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debasish Saha
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Animesh Pan
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, Rhode Island 02881, United States
| | - Vinod Kumar Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Soumya Sundar Mati
- Department of Chemistry, Government General Degree College, Keshiary, Singur 721135, West Bengal, India
| | - Satya Priya Moulik
- Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Bandaru V N Phani Kumar
- NMR, Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Pillai VS, Kumari P, Kolagatla S, Garcia Sakai V, Rudić S, Rodriguez BJ, Rubini M, Tych KM, Benedetto A. Controlling Amyloid Fibril Properties Via Ionic Liquids: The Representative Case of Ethylammonium Nitrate and Tetramethylguanidinium Acetate on the Amyloidogenesis of Lysozyme. J Phys Chem Lett 2022; 13:7058-7064. [PMID: 35900133 PMCID: PMC9358703 DOI: 10.1021/acs.jpclett.2c01505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein aggregation into amyloid fibrils has been observed in several pathological conditions and exploited in nanotechnology. It is also key in several biochemical processes. In this work, we show that ionic liquids (ILs), a vast class of organic electrolytes, can finely tune amyloid properties, opening a new landscape in basic science and applications. The representative case of ethylammonium nitrate (EAN) and tetramethyl-guanidinium acetate (TMGA) ILs on lysozyme is considered. First, atomic force microscopy has shown that the addition of EAN and TMGA leads to thicker and thinner amyloid fibrils of greater and lower electric potential, respectively, with diameters finely tunable by IL concentration. Optical tweezers and neutron scattering have shed light on their mechanism of action. TMGA interacts with the protein hydration layer only, making the relaxation dynamics of these water molecules faster. EAN interacts directly with the protein instead, making it mechanically unstable and slowing down its relaxation dynamics.
Collapse
Affiliation(s)
- Visakh
V. S. Pillai
- School
of Physics, University College Dublin, Dublin D04 N2E5, Ireland
- Conway
Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 N2E5, Ireland
| | - Pallavi Kumari
- School
of Physics, University College Dublin, Dublin D04 N2E5, Ireland
- Conway
Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 N2E5, Ireland
| | - Srikanth Kolagatla
- School
of Physics, University College Dublin, Dublin D04 N2E5, Ireland
- Conway
Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 N2E5, Ireland
| | - Victoria Garcia Sakai
- ISIS
Neutron and Muon Source, Rutherford Appleton Laboratory, Science & Technology Facilities Council, Didcot OX11 0QX, U.K.
| | - Svemir Rudić
- ISIS
Neutron and Muon Source, Rutherford Appleton Laboratory, Science & Technology Facilities Council, Didcot OX11 0QX, U.K.
| | - Brian J. Rodriguez
- School
of Physics, University College Dublin, Dublin D04 N2E5, Ireland
- Conway
Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 N2E5, Ireland
| | - Marina Rubini
- School
of Chemistry, University College Dublin, Dublin D04 N2E5, Ireland
| | - Katarzyna M. Tych
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Antonio Benedetto
- School
of Physics, University College Dublin, Dublin D04 N2E5, Ireland
- Conway
Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 N2E5, Ireland
- Department
of Science, University of Roma Tre, 00146 Rome, Italy
- Laboratory
for Neutron Scattering, Paul Scherrer Institute, 5232 Villigen, Switzerland
- , ,
| |
Collapse
|
6
|
Khaibrakhmanova D, Nikiforova A, Li Z, Sedov I. Effect of ligands with different affinity on albumin fibril formation. Int J Biol Macromol 2022; 204:709-717. [PMID: 35134455 DOI: 10.1016/j.ijbiomac.2022.01.189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 11/18/2022]
Abstract
The effect of binding of several ligands to bovine serum albumin on the kinetics of fibril formation at denaturing conditions is studied. The considered ligands are clinical drugs with different binding constants to albumin: relatively strong binders (naproxen, ibuprofen, warfarin with 105 to 107 binding constant values) and weak binders (isoniazid, ranitidine with 103 to 104 binding constant values). The data of thioflavin fluorescence binding assay, Congo red binding assay, and circular dichroism spectroscopy indicate ligand concentration-dependent suppression of fibril formation in the presence of strong binders and no effects in the presence of weak binders. Analysis of kinetic curves shows no induction lag associated with fibril nucleation and the first-order kinetics of fibril formation with respect to albumin concentration for all the studied systems. Using DSC method, the fractions of unfolded albumin at incubation temperature were determined for each albumin-ligand system and ligand concentration. Their magnitudes ranging from 0 to 1 correlate with the initial rates of fibril formation and with equilibrium concentrations of fibrils formed in the system after incubation for at least 120 min. The results indicate that fibrils are formed from partially or completely denatured albumin form with the rate proportional to the fraction of this form. Strong albumin binders act as thermodynamic inhibitors of fibrillation shifting the unfolding equilibrium to the side of the native ligand-bound protein.
Collapse
Affiliation(s)
| | - Alena Nikiforova
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Ziying Li
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia.
| |
Collapse
|