1
|
Li B, Alexandris S, Pantazidis C, Moghimi E, Sakellariou G, Vlassopoulos D, Filippidi E. Mechanical Properties of Epoxy Networks with Metal Coordination Bonds: Insights from Temperature and Molar Mass Variation. Macromolecules 2024; 57:9088-9096. [PMID: 39399830 PMCID: PMC11468226 DOI: 10.1021/acs.macromol.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
We investigate the thermal and mechanical properties of poly(ethylene glycol), PEG, networks with either solely covalent epoxy bonds (single networks, SNs) or coexisting epoxy and iron-catecholate bonds (dual networks, DNs). The latter has recently been shown to be a promising material that combines mechanical strength with significant deformability. Here, we address the previously unexplored effects of the temperature and PEG precursor molar mass on the mechanical properties of the networks. We focus on PEG molar masses of 500 g/mol, where crystallization is suppressed, and 1000 g/mol, where some weak crystals are formed. SNs soften with an increasing PEG molar mass. Heating reversibly softens the DN, but it has a minimal effect on SNs. Nonlinear shear deformation of the DN breaks iron-catecholate bonds, and subsequent recovery upon shear cessation occurs to a long-time steady-state modulus whose value is almost triple the original one, likely due to the formation of tris-complexes versus initial sterically or kinetically trapped bis-complexation. The response under elongation indicates that the DN with sacrificial bonds is stiffer and more extensible than the other networks. These results may provide guidelines for designing dual networks with tunable mechanics at the molecular level.
Collapse
Affiliation(s)
- Benke Li
- Institute
of Electronic Structure and Laser, FORTH, Heraklion, 70013, Greece
| | - Stelios Alexandris
- Institute
of Electronic Structure and Laser, FORTH, Heraklion, 70013, Greece
| | - Christos Pantazidis
- Department
of Chemistry, National and Kapodistrian
University of Athens, Athens, 15784, Greece
| | - Esmaeel Moghimi
- Institute
of Electronic Structure and Laser, FORTH, Heraklion, 70013, Greece
| | - Georgios Sakellariou
- Department
of Chemistry, National and Kapodistrian
University of Athens, Athens, 15784, Greece
| | - Dimitris Vlassopoulos
- Institute
of Electronic Structure and Laser, FORTH, Heraklion, 70013, Greece
- Department
of Materials Science and Engineering, University
of Crete, Heraklion, 70013, Greece
| | - Emmanouela Filippidi
- Institute
of Electronic Structure and Laser, FORTH, Heraklion, 70013, Greece
- Department
of Materials Science and Engineering, University
of Crete, Heraklion, 70013, Greece
| |
Collapse
|
2
|
Adamovich SN, Nalibayeva AM, Abdikalykov YN, Ushakov IA, Oborina EN, Rozentsveig IB. New Functional Alkoxysilanes and Silatranes: Synthesis, Structure, Properties, and Possible Applications. Int J Mol Sci 2023; 24:13818. [PMID: 37762120 PMCID: PMC10530882 DOI: 10.3390/ijms241813818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The aza-Michael reaction of 3-aminopropyltriethoxysilane (1) and -silatrane (2) with acrylates affords functionalized silyl-(3-8) and silatranyl-(9-14) mono- and diadducts with up to a 99% yield. Their structure has been proved with IR and NMR spectroscopies, mass spectrometry and XRD analysis. The hydrolytic homo-condensation of triethoxysilanes 3-5 gives siloxanes 3a-5a, which form complexes with Ag, Cu, and Ni salts. They are also able to adsorb these metals from solutions. The hetero-condensation reaction of silanes 4-8 with OH groups of zeolite (Z), silica gel (S) and glass (G) delivers the modified materials (Z4, S7, G4, G5, G7, G8, etc.), which can adsorb ions of noble metal (Au, Rh, Pd: G4 + Au, G5 + Pd, G7 + Rh). Thus, the synthesized Si-organic polymers and materials turned out to be promising sorbents (enterosorbents) of noble, heavy, toxic metal ions and can be applied in industry, environment, and medicine.
Collapse
Affiliation(s)
- Sergey N. Adamovich
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| | - Arailym M. Nalibayeva
- D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, 142 Kunayev Street, 050010 Almaty, Kazakhstan
| | - Yerlan N. Abdikalykov
- D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, 142 Kunayev Street, 050010 Almaty, Kazakhstan
| | - Igor A. Ushakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| | - Elizaveta N. Oborina
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| | - Igor B. Rozentsveig
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| |
Collapse
|
3
|
Kausar A. Self-healing aeronautical nanocomposites. POLYMERIC NANOCOMPOSITES WITH CARBONACEOUS NANOFILLERS FOR AEROSPACE APPLICATIONS 2023:263-296. [DOI: 10.1016/b978-0-323-99657-0.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
An X, Li Y, Xu M, Xu Z, Ma W, Du R, Wan G, Yan H, Cao Y, Ma D, Zhang Q, Jia X. A reconfigurable crosslinking system via an asymmetric metal–ligand coordination strategy. Polym Chem 2022. [DOI: 10.1039/d2py00132b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an asymmetric metal–ligand coordination strategy for reconfigurable elastomers. EXAFS is first introduced to monitor the structure change in M–L crosslinked polymers during stretching at the molecular level.
Collapse
Affiliation(s)
- Xiaoming An
- State Key Laboratory of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, P. R. China
| | - Ming Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhicheng Xu
- State Key Laboratory of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wencan Ma
- State Key Laboratory of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ruichun Du
- State Key Laboratory of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Gang Wan
- Department of Mechanical Engineering, Stanford University, CA 94350, USA
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, CA, 95403, USA
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, P. R. China
| | - Ding Ma
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Qiuhong Zhang
- State Key Laboratory of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xudong Jia
- State Key Laboratory of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|